
International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)
Опубликована: Май 19, 2025
Язык: Английский
International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)
Опубликована: Май 19, 2025
Язык: Английский
Information, Год журнала: 2025, Номер 16(3), С. 195 - 195
Опубликована: Март 3, 2025
Deep convolutional neural networks (CNNs) have revolutionized medical image analysis by enabling the automated learning of hierarchical features from complex imaging datasets. This review provides a focused CNN evolution and architectures as applied to analysis, highlighting their application performance in different fields, including oncology, neurology, cardiology, pulmonology, ophthalmology, dermatology, orthopedics. The paper also explores challenges specific outlines trends future research directions. aims serve valuable resource for researchers practitioners healthcare artificial intelligence.
Язык: Английский
Процитировано
4IEEE Access, Год журнала: 2025, Номер 13, С. 22931 - 22945
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1International Journal of Machine Learning and Cybernetics, Год журнала: 2025, Номер unknown
Опубликована: Апрель 16, 2025
Язык: Английский
Процитировано
1Neuroscience, Год журнала: 2025, Номер 576, С. 80 - 95
Опубликована: Апрель 25, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 108, С. 107980 - 107980
Опубликована: Апрель 29, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 109, С. 107926 - 107926
Опубликована: Май 6, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 14, 2025
Deep learning, particularly convolutional neural networks (CNNs), has proven valuable for brain tumor classification, aiding diagnostic and therapeutic decisions in medical imaging. Despite their accuracy, these models are vulnerable to adversarial attacks, compromising reliability clinical settings. In this research, we utilized a VGG16-based CNN model classify tumors, achieving 96% accuracy on clean magnetic resonance imaging (MRI) data. To assess robustness, exposed the Fast Gradient Sign Method (FGSM) Projected Descent (PGD) which reduced 32% 13%, respectively. We then applied multi-layered defense strategy, including training with FGSM PGD examples feature squeezing techniques such as bit-depth reduction Gaussian blurring. This approach improved resilience, 54% 47% examples. Our results highlight importance of proactive strategies maintaining AI under conditions.
Язык: Английский
Процитировано
0International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)
Опубликована: Май 19, 2025
Язык: Английский
Процитировано
0