Improved Manta Ray Foraging Optimization for PID Control Parameter Tuning in Artillery Stabilization Systems DOI Creative Commons
Xiuye Wang, Xiang Li, Qinqin Sun

и другие.

Biomimetics, Год журнала: 2025, Номер 10(5), С. 266 - 266

Опубликована: Апрель 26, 2025

In this paper, an Improved Manta Ray Foraging Optimization (IMRFO) algorithm is proposed to address the challenge of parameter tuning in traditional PID controllers for artillery stabilization systems. The introduces chaotic mapping optimize initial population, enhancing global search capability; additionally, a sigmoid function and Lévy flight-based dynamic adjustment strategy regulate selection factor step size, improving both convergence speed optimization accuracy. Comparative experiments using five benchmark test functions demonstrate that IMRFO outperforms commonly used heuristic algorithms four cases. validated through co-simulation physical platform experiments. Experimental results show approach significantly improves control accuracy response speed, offering effective solution optimizing complex nonlinear By introducing self-tuning system parameters, work provides new intelligence adaptability modern control.

Язык: Английский

Multi-residual attention network for skin lesion classification DOI
Haythem Ghazouani

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 103, С. 107449 - 107449

Опубликована: Янв. 6, 2025

Язык: Английский

Процитировано

0

Improved Manta Ray Foraging Optimization for PID Control Parameter Tuning in Artillery Stabilization Systems DOI Creative Commons
Xiuye Wang, Xiang Li, Qinqin Sun

и другие.

Biomimetics, Год журнала: 2025, Номер 10(5), С. 266 - 266

Опубликована: Апрель 26, 2025

In this paper, an Improved Manta Ray Foraging Optimization (IMRFO) algorithm is proposed to address the challenge of parameter tuning in traditional PID controllers for artillery stabilization systems. The introduces chaotic mapping optimize initial population, enhancing global search capability; additionally, a sigmoid function and Lévy flight-based dynamic adjustment strategy regulate selection factor step size, improving both convergence speed optimization accuracy. Comparative experiments using five benchmark test functions demonstrate that IMRFO outperforms commonly used heuristic algorithms four cases. validated through co-simulation physical platform experiments. Experimental results show approach significantly improves control accuracy response speed, offering effective solution optimizing complex nonlinear By introducing self-tuning system parameters, work provides new intelligence adaptability modern control.

Язык: Английский

Процитировано

0