Advancing Chest X-ray Diagnostics via Multi-Modal Neural Networks with Attention DOI

Douglas Townsell,

Tanvi Banerjee,

Lingwei Chen

и другие.

Опубликована: Июль 15, 2024

The healthcare field is undergoing a profound shift, with deep learning in AI increasingly augmenting medical expertise complex and challenging tasks. Our research addresses the task of chest X-ray image diagnostics, characterized by multifaceted diagnostic labels class im-balances respiratory disease cases. approach synergizes pre-trained classification neural network patient metadata integration, significantly boosting precision. A key aspect our methodology identification an effective decision boundary to enhance accuracy reduce false positives. effectiveness model demonstrated average AUC score 0.84, surpassing existing models signifying notable leap AI's role diagnostics. This tool stands aid clinical decision-making, particularly navigating complexities comorbidities health.

Язык: Английский

Multi-scale spatial pyramid attention mechanism for image recognition: An effective approach DOI
Yu Yang, Yi Zhang, Zeyu Cheng

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108261 - 108261

Опубликована: Апрель 5, 2024

Язык: Английский

Процитировано

10

Automated pixel-level pavement marking detection based on a convolutional transformer DOI
Hang Zhang, Anzheng He, Zishuo Dong

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108416 - 108416

Опубликована: Апрель 25, 2024

Язык: Английский

Процитировано

7

Development of optimized ensemble machine learning-based character segmentation framework for ancient Tamil palm leaf manuscripts DOI

Mary Selvan,

Kaladevi Ramar

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110235 - 110235

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0

Self-supervised multi-modality learning for multi-label skin lesion classification DOI
Hao Wang, Euijoon Ahn,

Lei Bi

и другие.

Computer Methods and Programs in Biomedicine, Год журнала: 2025, Номер unknown, С. 108729 - 108729

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Artificial intelligence for computer aided detection of pneumoconiosis: A succinct review since 1974 DOI
Faisel Mushtaq,

S.K. Bhattacharjee,

Sandeep Mandia

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108516 - 108516

Опубликована: Май 2, 2024

Язык: Английский

Процитировано

3

Diverter transformer-based multi-encoder-multi-decoder network model for medical retinal blood vessel image segmentation DOI

Chengwei Wu,

Min Guo, Miao Ma

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 93, С. 106132 - 106132

Опубликована: Фев. 23, 2024

Язык: Английский

Процитировано

2

Efficient Feature Extraction and Segmentation Methods Used in Tuberculosis Detection DOI

Emil. M. Paul,

G. Jayahari Prabhu,

B. Perumal

и другие.

2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Год журнала: 2024, Номер unknown, С. 1 - 5

Опубликована: Март 5, 2024

According to X-ray images, the segmentation and classification with noise removal are major stages. When seen from different perspectives or in various lighting conditions, chest image appears differently. This paper discusses threat that tuberculosis poses across globe. Although there many medical treatments available, TB diagnosis is still challenging. Several clinical diagnostic processes earlier poster anterior radiographs contain computationally developed algorithms simplify scientific analysis by utilizing acquisition. It possible a digital will be required for annotation of patient's demographic information while being screened via radiography. Special screening victimization. work proposed novel detection model tuberculosis. Initially, analyzed input noises after median filter performing pre-processing followed watershed mechanism segmentation. Next, feature extraction carried out GLCM support vector machine (SVM) classifying normal The Kaggle dataset MATLAB software handled implementation part it describes performances higher than existing works.

Язык: Английский

Процитировано

0

Advancing Chest X-ray Diagnostics via Multi-Modal Neural Networks with Attention DOI

Douglas Townsell,

Tanvi Banerjee,

Lingwei Chen

и другие.

Опубликована: Июль 15, 2024

The healthcare field is undergoing a profound shift, with deep learning in AI increasingly augmenting medical expertise complex and challenging tasks. Our research addresses the task of chest X-ray image diagnostics, characterized by multifaceted diagnostic labels class im-balances respiratory disease cases. approach synergizes pre-trained classification neural network patient metadata integration, significantly boosting precision. A key aspect our methodology identification an effective decision boundary to enhance accuracy reduce false positives. effectiveness model demonstrated average AUC score 0.84, surpassing existing models signifying notable leap AI's role diagnostics. This tool stands aid clinical decision-making, particularly navigating complexities comorbidities health.

Язык: Английский

Процитировано

0