Epilepsy Research, Год журнала: 2025, Номер 215, С. 107582 - 107582
Опубликована: Май 16, 2025
Язык: Английский
Epilepsy Research, Год журнала: 2025, Номер 215, С. 107582 - 107582
Опубликована: Май 16, 2025
Язык: Английский
Entropy, Год журнала: 2025, Номер 27(5), С. 457 - 457
Опубликована: Апрель 24, 2025
Traditional entropy-based learning methods primarily extract the relevant entropy measures directly from EEG signals using sliding time windows. This study applies differential to a time-frequency domain that is decomposed by Stockwell transform, proposing novel emotion recognition method combining and common spatial pattern (CSP). The results demonstrate effectively captures features of high-frequency signals, CSP-transformed show superior discriminative capability for different emotional states. experimental indicate proposed achieves excellent classification performance in Gamma band (30–46 Hz) recognition. combined approach yields high accuracy binary tasks (“positive vs. neutral”, “negative “positive negative”) maintains satisfactory three-class task negative neutral”).
Язык: Английский
Процитировано
0Epilepsy Research, Год журнала: 2025, Номер 215, С. 107582 - 107582
Опубликована: Май 16, 2025
Язык: Английский
Процитировано
0