Journal of Building Engineering, Год журнала: 2025, Номер 102, С. 112057 - 112057
Опубликована: Фев. 7, 2025
Язык: Английский
Journal of Building Engineering, Год журнала: 2025, Номер 102, С. 112057 - 112057
Опубликована: Фев. 7, 2025
Язык: Английский
Applied Energy, Год журнала: 2023, Номер 338, С. 120936 - 120936
Опубликована: Март 8, 2023
Язык: Английский
Процитировано
105Agronomy, Год журнала: 2023, Номер 13(3), С. 625 - 625
Опубликована: Фев. 22, 2023
Weather is an essential component of natural resources that affects agricultural production and plays a decisive role in deciding the type production, planting structure, crop quality, etc. In field agriculture, medium- long-term predictions temperature humidity are vital for guiding activities improving yield quality. However, existing intelligent models still have difficulties dealing with big weather data predicting applications, such as striking balance between prediction accuracy learning efficiency. Therefore, multi-head attention encoder-decoder neural network optimized via Bayesian inference strategy (BMAE-Net) proposed herein to predict time series changes accurately. Firstly, we incorporate into gated recurrent unit construct Bayesian-gated units (Bayesian-GRU) module. Then, mechanism introduced design structure each layer, applicability time-length changes. Subsequently, framework hyperparameter optimization designed infer intrinsic relationships among time-series high accuracy. For example, R-evaluation metrics three locations 0.9, 0.804, 0.892, respectively, while RMSE reduced 2.899, 3.011, 1.476, seen Case 1 data. Extensive experiments subsequently demonstrated BMAE-Net has overperformed on location datasets, which provides effective solution applications smart agriculture system.
Язык: Английский
Процитировано
34Advanced Engineering Informatics, Год журнала: 2023, Номер 56, С. 102016 - 102016
Опубликована: Апрель 1, 2023
Язык: Английский
Процитировано
33Developments in the Built Environment, Год журнала: 2024, Номер 18, С. 100465 - 100465
Опубликована: Апрель 1, 2024
In predicting building energy (affected by seasons), there are issues like inefficient hyperparameter optimization and inaccurate predictions, it is unclear whether spatial temporal attention improves performance. This study proposes a method based on Bayesian Optimization (BO), Spatial-Temporal Attention (STA), Long Short-Term Memory (LSTM). Seven improved LSTM models (BO-LSTM, SA-LSTM, TA-LSTM, STA-LSTM, BO-SA-LSTM, BO-TA-LSTM, BO-STA-LSTM) compared with the impacts of seasonal variations BO-STA-LSTM analysed using different sample types time domain analysis. To further demonstrate efficiency proposed method, comparisons convolutional neural network (CNN) (TCN) performed, followed validation new datasets. The findings indicate that adding STA BO to enhances average prediction performance 0.0885. alone contributes 0.0717, while 0.0560. achieves higher accuracy for similar test training samples or size 14016, effectively capturing seasonal, trend, peak patterns. Additionally, outperforms CNN TCN, demonstrating superior accuracy.
Язык: Английский
Процитировано
9Practice, progress, and proficiency in sustainability, Год журнала: 2025, Номер unknown, С. 219 - 296
Опубликована: Янв. 3, 2025
There's a pressing need to democratise DL algorithms while leveraging their performance. This chapter proposes customisable and efficient Automated Machine Learning (AutoML) forecasting framework deal with volatile complex time series using Hyperparameter Optimization (HPO) techniques in combination ANN, LSTM, GRU, Bi-LSTM Bi-GRU. The uses hyperband random search high-dimensional hyperparameter space demonstrate the models' performance without requiring sophisticated pre-processing steps, thereby providing milestone design models after comparative analysis of specific recurrent models. After finding optimal combinations for each model, we study correlation variance between statistical tests, data visualisation tools, SHAP. results discussed improvements elaborating on relationship performance, dataset's size, its inherent noise selection.
Язык: Английский
Процитировано
1IEEE Access, Год журнала: 2023, Номер 11, С. 29162 - 29174
Опубликована: Янв. 1, 2023
Dissolved oxygen content is a key indicator of water quality in aquaculture environment. Because its nonlinearity, dynamics, and complexity, which makes traditional methods face challenges the accuracy speed dissolved prediction. As solution to these issues, this study introduces hybrid model consisting Light Gradient Boosting Machine (LightGBM) Bidirectional Simple Recurrent Unit (BiSRU). Firstly, Linear interpolation smoothing were used identify significant parameters. LightGBM algorithm then determines significance by eliminating irrelevant variables predicting intensive aquaculture. Finally, attention method was implemented map weighting learning parameter matrices, so enabling BiSRU's hidden states be assigned different weights. The findings shown that presented prediction can accurately anticipate fluctuating trend over 10-day period just 122 seconds, rate reached 96.28%. Comparing effects -BiSRU, - GRU, LightGBM-LSTM, BiSRU Attention takes least time. Its higher provide an essential reference for regulation.
Язык: Английский
Процитировано
20Buildings, Год журнала: 2023, Номер 13(6), С. 1542 - 1542
Опубликована: Июнь 16, 2023
The development of digital twins leads to the pathway toward intelligent buildings. Today, overwhelming rate data in buildings carries a high amount information that can provide an opportunity for representation and energy optimization strategies Heating, Ventilation, Air Conditioning (HVAC) systems. To implement successful management strategy building, data-driven approach should accurately forecast HVAC features, particular indoor temperatures. Accurate predictions not only increase thermal comfort levels, but also play crucial role saving consumption. This study aims investigate capabilities approaches model predicting A case educational building is considered temperatures using machine learning deep algorithms. algorithms’ performance evaluated compared. important parameters are sorted out before choosing best architecture. Considering real data, prediction models created results reveal all investigated Hence, proposed neural network obtained highest accuracy with average RMSE 0.16 °C, which renders it candidate twin.
Язык: Английский
Процитировано
18Energy Sustainable Development/Energy for sustainable development, Год журнала: 2023, Номер 74, С. 381 - 395
Опубликована: Май 11, 2023
Язык: Английский
Процитировано
17Energy and Buildings, Год журнала: 2023, Номер 298, С. 113527 - 113527
Опубликована: Сен. 7, 2023
Язык: Английский
Процитировано
17Ocean Engineering, Год журнала: 2024, Номер 307, С. 118156 - 118156
Опубликована: Май 20, 2024
Язык: Английский
Процитировано
6