Sustainable Cities and Society, Год журнала: 2024, Номер 116, С. 105876 - 105876
Опубликована: Окт. 12, 2024
Язык: Английский
Sustainable Cities and Society, Год журнала: 2024, Номер 116, С. 105876 - 105876
Опубликована: Окт. 12, 2024
Язык: Английский
Sustainable Cities and Society, Год журнала: 2024, Номер 113, С. 105654 - 105654
Опубликована: Июль 9, 2024
Ensuring sustainable water and electricity consumption in urban residential buildings is a growing challenge worldwide, particularly rapidly developing regions with harsh climates. This study examines the seasonal variation of Doha, Qatar, exploring interconnectedness land use/land cover (LULC) socio-demographic characteristics household consumption. For this purpose, we employed statistical analysis (i.e. Pearson correlation Bootstrap analysis) advanced geostatistical models, including Geographically Weighted Regression (GWR) Multiscale (MGWR), to analyze monitor spatial variations The methods involved assessing relationship between surface temperature (LST), water-electricity consumption, analyzing impact demographic variables. Key findings indicate significant spatiotemporal influenced by changes LULC such as size structure. highlight need for integrated planning energy policies that consider impacts enhance efficiency sustainability settings. Furthermore, results underscore importance addressing complex interplay development resource policy-making.
Язык: Английский
Процитировано
11Sustainable Cities and Society, Год журнала: 2024, Номер 112, С. 105587 - 105587
Опубликована: Июнь 15, 2024
Язык: Английский
Процитировано
10Urban Science, Год журнала: 2025, Номер 9(2), С. 28 - 28
Опубликована: Янв. 28, 2025
Surface properties in complex urban environments can significantly impact local-level temperature gradients and distribution on several scales. Studying anomalies identifying heat pockets settings is challenging. Limited high-resolution datasets are available that do not translate into an accurate assessment of near-surface temperature. This study developed a model to predict land surface (LST) at high spatial–temporal resolution areas using Landsat data meteorological inputs from NLDAS. microclimate (UC) air for inner through build-up scheme. The innovative aspect the inclusion micro-features use characteristics, which incorporate types, vegetation, building density heights, short wave radiation, relative humidity. Statistical models, including Generalized Additive Model (GAM) spatial autoregression (SAR), were based characteristics weather parameters. was applied microclimates densely populated regions, focusing Manhattan New York City. results indicated SAR performed better (R2 = 0.85, RMSE 0.736) predicting micro-scale LST variations compared GAM 0.39, 1.203) validated accuracy prediction with R2 ranging 0.79 0.95.
Язык: Английский
Процитировано
1Urban Climate, Год журнала: 2024, Номер 56, С. 102016 - 102016
Опубликована: Июнь 28, 2024
The state of Qatar has been experiencing rapid urbanization with around 85% its population residing in Doha. country faces notable challenges related to the Urban Heat Island (UHI) effect, which is exacerbated by hot and humid desert climate. This study focuses on analyzing UHI phenomenon Doha, utilizing observed meteorological data Weather Research Forecasting model (WRF v4.5). Two land use cover (LULC) datasets from 2001 2018 are employed, simulations conducted using different urban canopy models. LULC includes 100 m resolution information that categorizes areas into 11 local climate zones. Results indicate significant intensity during both winter summer periods (up 6.5 °C), differences between daytime nighttime temperatures. In agreement observations, predicts not only a strong effect nighttime, but also Cool Doha −5.8 °C summer). impact various parameterization schemes simulation accuracy highlighted. building energy demonstrates superior performance predicting temperature relative humidity period. spatial distribution heat index illustrates intensified warming city.
Язык: Английский
Процитировано
8Annals of GIS, Год журнала: 2025, Номер unknown, С. 1 - 18
Опубликована: Янв. 24, 2025
Язык: Английский
Процитировано
0Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106209 - 106209
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0IOP Conference Series Earth and Environmental Science, Год журнала: 2025, Номер 1462(1), С. 012056 - 012056
Опубликована: Март 1, 2025
Abstract Urban thermal comfort is one of the factors that directly affect urban quality. This study aims to determine dynamics in Surakarta City from 2013 2023. The analysis method used measure level using Thermal Humidity Index (THI) surface temperature and relative humidity data. measurement results show category quite comfortable dominates 2018, while 2023, has increased, so it. distribution categories shows North side more compared South City.
Язык: Английский
Процитировано
0Remote Sensing Applications Society and Environment, Год журнала: 2025, Номер unknown, С. 101529 - 101529
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106445 - 106445
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106501 - 106501
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0