Building materials genome from ground‐state configuration to engineering advance DOI Creative Commons
Zi‐Kui Liu

Materials Genome Engineering Advances, Год журнала: 2023, Номер 1(2)

Опубликована: Ноя. 10, 2023

Abstract Individual phases are commonly considered as the building blocks of materials. However, accurate theoretical prediction properties individual remains elusive. The top‐down approach by decoding genomic from experimental observations is nonunique. density functional theory (DFT), a state‐of‐the‐art solution quantum mechanics, prescribes existence ground‐state configuration at 0 K for given system. It self‐evident that alone insufficient to describe phase finite temperatures symmetry‐breaking non‐ground‐state configurations excited statistically above K. Our multiscale entropy (recently terms Zentropy theory) postulates composed sum each weighted its probability plus configurational among all configurations. Consequently, partition function in statistical mechanics needs be evaluated free energy rather than total energy. combination and represents materials can used quantitatively predict with predicted DFT well derived phases.

Язык: Английский

Quantitative predictive theories through integrating quantum, statistical, equilibrium, and nonequilibrium thermodynamics DOI Creative Commons
Zi‐Kui Liu

Journal of Physics Condensed Matter, Год журнала: 2024, Номер 36(34), С. 343003 - 343003

Опубликована: Май 3, 2024

Abstract Today’s thermodynamics is largely based on the combined law for equilibrium systems and statistical mechanics derived by Gibbs in 1873 1901, respectively, while irreversible nonequilibrium resides essentially Onsager Theorem as a separate branch of developed 1930s. Between them, quantum was invented quantitatively solved terms density functional theory (DFT) 1960s. These three scientific domains operate different principles are very much separated from each other. In analogy to parable blind men elephant articulated Perdew, they individually represent portions complex system thus incomplete themselves alone, resulting lack quantitative agreement between their predictions experimental observations. Over last two decades, author’s group has multiscale entropy approach (recently termed zentropy theory) that integrates DFT-based capable accurately predicting free energy systems. Furthermore, combination with presented Hillert, author cross phenomena beyond phenomenological Theorem. The jointly provide predictive theories electronic any observable scales reviewed present work.

Язык: Английский

Процитировано

13

Genomic materials design: CALculation of PHAse Dynamics DOI Creative Commons
Gregory B. Olson, Zi‐Kui Liu

Calphad, Год журнала: 2023, Номер 82, С. 102590 - 102590

Опубликована: Авг. 1, 2023

Язык: Английский

Процитировано

18

Thermodynamic modeling of Fe-Nb and Fe-Nb-Ni systems supported by first-principles calculations and diffusion-multiple measurements DOI
Hui Sun, Chuangye Wang, Shun‐Li Shang

и другие.

Acta Materialia, Год журнала: 2024, Номер 268, С. 119747 - 119747

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

9

Advances in Metal Casting Technology: A Review of State of the Art, Challenges and Trends—Part II: Technologies New and Revived DOI Creative Commons
Dirk Lehmhus

Metals, Год журнала: 2024, Номер 14(3), С. 334 - 334

Опубликована: Март 14, 2024

The present text is the second part of an editorial written for a Special Issue entitled Advances in Metal Casting Technology [...]

Язык: Английский

Процитировано

6

Discovering melting temperature prediction models of inorganic solids by combining supervised and unsupervised learning DOI Open Access
Vahe Gharakhanyan, Luke J. Wirth, José Antonio Garrido Torres

и другие.

The Journal of Chemical Physics, Год журнала: 2024, Номер 160(20)

Опубликована: Май 28, 2024

The melting temperature is important for materials design because of its relationship with thermal stability, synthesis, and processing conditions. Current empirical computational point estimation techniques are limited in scope, feasibility, or interpretability. We report the development a machine learning methodology predicting temperatures binary ionic solid materials. evaluated different machine-learning models trained on dataset points 476 non-metallic crystalline compounds using embeddings constructed from elemental properties density-functional theory calculations as model inputs. A direct supervised-learning approach yields mean absolute error around 180 K but suffers low find that fidelity predictions can further be improved by introducing an additional unsupervised-learning step first classifies before melting-point regression. Not only does this two-step exhibit accuracy, also provides level interpretability insights into feature importance types depend specific atomic bonding inside material. Motivated finding, we used symbolic to interpretable physical temperature, which recovered best-performing features both prior provided

Язык: Английский

Процитировано

5

Machine learning aided high-throughput first-principles calculations to predict the formation enthalpy of σ phase DOI
Yue Su, Jiong Wang

Calphad, Год журнала: 2023, Номер 82, С. 102599 - 102599

Опубликована: Авг. 18, 2023

Язык: Английский

Процитировано

10

Al–Ni–Ti thermodynamic database from first-principles calculations DOI
Arkapol Saengdeejing, Ryoji Sahara, Yoshiaki Toda

и другие.

Calphad, Год журнала: 2024, Номер 84, С. 102658 - 102658

Опубликована: Янв. 5, 2024

Язык: Английский

Процитировано

4

On Gibbs Equilibrium and Hillert Nonequilibrium Thermodynamics DOI
Zi‐Kui Liu

Journal of Phase Equilibria and Diffusion, Год журнала: 2024, Номер unknown

Опубликована: Окт. 19, 2024

Язык: Английский

Процитировано

4

Perspectives Toward Damage‐Tolerant Nanostructure Ceramics DOI
Meicen Fan, Tongqi Wen, Shile Chen

и другие.

Advanced Science, Год журнала: 2024, Номер 11(24)

Опубликована: Апрель 6, 2024

Abstract Advanced ceramic materials and devices call for better reliability damage tolerance. In addition to their strong bonding nature, there are examples demonstrating superior mechanical properties of nanostructure ceramics, such as damage‐tolerant aerogels that can withstand high deformation without cracking local plasticity in dense nanocrystalline ceramics. The recent progresses shall be reviewed this perspective article. Three topics including highly elastic nano‐fibrous aerogels, load‐bearing nanoceramics with improved properties, implementing machine learning‐assisted simulations toolbox understanding the relationship among structure, mechanisms, microstructure‐properties discussed. It is hoped perspectives present here help discovery, synthesis, processing future structural insensitive flaws damages service.

Язык: Английский

Процитировано

3

Boosting computational thermodynamic analysis of the CVD of SiC coating via machine learning DOI

Bingquan Xu,

Wei Huang, Junjun Wang

и другие.

Journal of Crystal Growth, Год журнала: 2024, Номер 637-638, С. 127727 - 127727

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

3