Decomposition‐based maximum likelihood gradient iterative algorithm for multivariate systems with colored noise DOI
Lijuan Liu

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер 34(11), С. 7265 - 7284

Опубликована: Март 28, 2024

Summary In this paper, we use the maximum likelihood principle and negative gradient search to study identification issues of multivariate equation‐error systems whose outputs are contaminated by an moving average noise process. The model decomposition technique is used decompose system into several regressive subsystems based on number outputs. order improve parameter estimation accuracy, a decomposition‐based iterative algorithm proposed means method. numerical simulation example indicates that method has better results than compared algorithm.

Язык: Английский

Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering DOI
Huan Xu, Ling Xu, Shaobo Shen

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115181 - 115181

Опубликована: Июль 1, 2024

Язык: Английский

Процитировано

33

Online identification of Hammerstein systems with B‐spline networks DOI
Yanjiao Wang, Yiting Liu, Jiehao Chen

и другие.

International Journal of Adaptive Control and Signal Processing, Год журнала: 2024, Номер 38(6), С. 2074 - 2092

Опубликована: Март 27, 2024

Summary Nonlinear systems widely exist in real‐word applications and the research for these has enjoyed a long fruitful history, including system identification community. However, modeling nonlinear is often quite challenging still remains many unresolved questions. This article considers online issue of Hammerstein systems, whose static function modeled by B‐spline network. First, model studied constructed using bilinear parameter decomposition model. Second, recursive algorithms are proposed to find estimates moving data window particle swarm optimization procedure, show that converge their true values with low computational burden. Numerical examples also given test effectiveness algorithms.

Язык: Английский

Процитировано

23

Auxiliary Model-based Continuous Mixed p-norm Algorithm for Output-error Moving Average Systems Using the Multi-innovation Optimization DOI
Wentao Liu, Weili Xiong

International Journal of Control Automation and Systems, Год журнала: 2024, Номер 22(1), С. 217 - 227

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

21

The filtering-based recursive least squares identification and convergence analysis for nonlinear feedback control systems with coloured noises DOI
Ling Xu, Huan Xu, Chun Wei

и другие.

International Journal of Systems Science, Год журнала: 2024, Номер 55(16), С. 3461 - 3484

Опубликована: Июль 7, 2024

Язык: Английский

Процитировано

21

Decomposition‐based maximum likelihood gradient iterative algorithm for multivariate systems with colored noise DOI
Lijuan Liu

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер 34(11), С. 7265 - 7284

Опубликована: Март 28, 2024

Summary In this paper, we use the maximum likelihood principle and negative gradient search to study identification issues of multivariate equation‐error systems whose outputs are contaminated by an moving average noise process. The model decomposition technique is used decompose system into several regressive subsystems based on number outputs. order improve parameter estimation accuracy, a decomposition‐based iterative algorithm proposed means method. numerical simulation example indicates that method has better results than compared algorithm.

Язык: Английский

Процитировано

20