The daily soil water content monitoring of cropland in irrigation area using Sentinel-2/3 spatio-temporal fusion and machine learning DOI Creative Commons

Ruiqi Du,

Youzhen Xiang, Junying Chen

и другие.

International Journal of Applied Earth Observation and Geoinformation, Год журнала: 2024, Номер 132, С. 104081 - 104081

Опубликована: Авг. 1, 2024

Understanding soil moisture dynamics is crucial for crop growth. The digital mapping of field distribution provides valuable information agricultural water management. optical satellite data fine scale a region. However, these are greatly limited due to cloud contamination and revisit period. Despite the reported beneficial effects spatiotemporal fusion methods, accurate estimates high-resolution through still unclear, particularly when using Sentinel-2/3 images. This study introduces new estimation framework integrating spatio-temporal spectral from images machine learning algorithm,and thus provide spatiotemporally continuous estimation. includes four methods (ESTARRFM, Fit-FC, FSDAF STFMF) models (PLSR, SVM, RF GBRT). feasibility was validated in Hetao Irrigation Area Inner Mongolia, China. results showed that fused image generated by Fit-FC visually closest true image, followed ESTARFM, FSDAF, STFMF. fusion-machine provided reliable multi-layer (0 ∼ 20, 20 40 60 cm) irrigation area. dense time series facilitated detection events irrigated farmland. Our findings highlighted effectiveness providing daily monitoring farmland on large scale. These high spatial–temporal resolution growth resource management, contributing further expanding application remote sensing precision agriculture.

Язык: Английский

Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development DOI

Chaitanya B. Pande,

Johnbosco C. Egbueri, Romulus Costache

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 444, С. 141035 - 141035

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

41

Regional Soil Moisture Estimation Leveraging Multi-Source Data Fusion and Automated Machine Learning DOI Creative Commons
Shenglin Li, Ping Zhu, Ni Song

и другие.

Remote Sensing, Год журнала: 2025, Номер 17(5), С. 837 - 837

Опубликована: Фев. 27, 2025

Soil moisture (SM) monitoring in farmland at a regional scale is crucial for precision irrigation management and ensuring food security. However, existing methods SM estimation encounter significant challenges related to accuracy, generalizability, automation. This study proposes an integrated data fusion method systematically assess the potential of three automated machine learning (AutoML) frameworks—tree-based pipeline optimization tool (TPOT), AutoGluon, H2O AutoML—in retrieving SM. To evaluate impact input variables on six scenarios were designed: multispectral (MS), thermal infrared (TIR), MS combined with TIR, auxiliary data, TIR comprehensive combination MS, data. The research was conducted winter wheat cultivation area within People’s Victory Canal Irrigation Area, focusing 0–40 cm soil layer. results revealed that scenario incorporating all types (MS + auxiliary) achieved highest retrieval accuracy. Under this scenario, AutoML frameworks demonstrated optimal performance. AutoGluon superior performance most scenarios, particularly excelling scenario. It accuracy Pearson correlation coefficient (R) value 0.822, root mean square error (RMSE) 0.038 cm3/cm3, relative (RRMSE) 16.46%. underscores critical role strategies enhancing highlights advantages regional-scale retrieval. findings offer robust technical foundation theoretical guidance advancing efficient monitoring.

Язык: Английский

Процитировано

3

Ensemble and transfer learning of soil inorganic carbon with visible near-infrared spectra DOI Creative Commons
Yu Wang, Keyang Yin, Bifeng Hu

и другие.

Geoderma, Год журнала: 2025, Номер 456, С. 117257 - 117257

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

2

Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions DOI
Zixun Dong, Xiaopeng Bai, Daochun Xu

и другие.

Bioresource Technology, Год журнала: 2022, Номер 367, С. 128182 - 128182

Опубликована: Окт. 25, 2022

Язык: Английский

Процитировано

65

Experimental validation of multi-stage optimal energy management for a smart microgrid system under forecasting uncertainties DOI
Saad Gheouany, Hamid Ouadi, F. Giri

и другие.

Energy Conversion and Management, Год журнала: 2023, Номер 291, С. 117309 - 117309

Опубликована: Июнь 23, 2023

Язык: Английский

Процитировано

41

A dryness index TSWDI based on land surface temperature, sun-induced chlorophyll fluorescence, and water balance DOI
Ying Liu, Xiangyu Yu, Chaoya Dang

и другие.

ISPRS Journal of Photogrammetry and Remote Sensing, Год журнала: 2023, Номер 202, С. 581 - 598

Опубликована: Июль 15, 2023

Язык: Английский

Процитировано

40

Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches DOI

Hamed Tavakoli,

José Correa,

Marmar Sabetizade

и другие.

Soil and Tillage Research, Год журнала: 2023, Номер 229, С. 105684 - 105684

Опубликована: Фев. 27, 2023

Язык: Английский

Процитировано

24

Surface soil moisture from combined active and passive microwave observations: Integrating ASCAT and SMAP observations based on machine learning approaches DOI
Hongliang Ma, Jiangyuan Zeng, Xiang Zhang

и другие.

Remote Sensing of Environment, Год журнала: 2024, Номер 308, С. 114197 - 114197

Опубликована: Май 11, 2024

Язык: Английский

Процитировано

15

Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models DOI

Zongjun Wu,

Ningbo Cui, Wenjiang Zhang

и другие.

Journal of Hydrology, Год журнала: 2024, Номер 637, С. 131336 - 131336

Опубликована: Май 12, 2024

Язык: Английский

Процитировано

15

Machine Learning-Driven Remote Sensing Applications for Agriculture in India—A Systematic Review DOI Creative Commons
Shweta Pokhariyal,

N. R. Patel,

Ajit Govind

и другие.

Agronomy, Год журнала: 2023, Номер 13(9), С. 2302 - 2302

Опубликована: Авг. 31, 2023

In India, agriculture serves as the backbone of economy, and is a primary source employment. Despite setbacks caused by COVID-19 pandemic, allied sectors in India exhibited resilience, registered growth 3.4% during 2020–2121, even overall economic declined 7.2% same period. The improvement sector holds paramount importance sustaining increasing population safeguarding food security. Consequently, researchers worldwide have been concentrating on digitally transforming leveraging advanced technologies to establish smart, sustainable, lucrative farming systems. advancement remote sensing (RS) machine learning (ML) has proven beneficial for farmers policymakers minimizing crop losses optimizing resource utilization through valuable insights. this paper, we present comprehensive review studies dedicated application RS ML addressing agriculture-related challenges India. We conducted systematic literature following Preferred Reporting Items Systematic Reviews Meta-Analysis (PRISMA) guidelines evaluated research articles published from 2015 2022. objective study shed light both technique across key agricultural domains, encompassing “crop management”, “soil “water management, ultimately leading their improvement. This primarily focuses assessing current status using intelligent geospatial data analytics Indian agriculture. Majority were carried out management category, where deployment various sensors led yielded substantial improvements monitoring. integration technology techniques can enable an approach monitoring, thereby providing recommendations insights effective management.

Язык: Английский

Процитировано

23