Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132460 - 132460
Опубликована: Дек. 1, 2024
Язык: Английский
Journal of Hydrology, Год журнала: 2024, Номер unknown, С. 132460 - 132460
Опубликована: Дек. 1, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2024, Номер 917, С. 170425 - 170425
Опубликована: Янв. 29, 2024
Язык: Английский
Процитировано
20Journal of Hydrology, Год журнала: 2024, Номер 630, С. 130666 - 130666
Опубликована: Янв. 24, 2024
Язык: Английский
Процитировано
18Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 53, С. 101770 - 101770
Опубликована: Апрель 4, 2024
Target area of this study are the main agricultural production zones Austria. Most important croplands cover flat to pre-alpine areas concentrated in north, east, and southeast The novelty our is spatiotemporal assessment rainfall characteristics that drive erosivity at event level as well identification erosive distribution patterns within events. Our approach allows definition both typical extreme erosivity. Long-term high temporal resolution datasets were used apply a clustering approach, seasonal spatial analyses, distributions (isopleths) identified types (clusters). Three dominant event-types (clusters) strongly relate with Austria's seasonality complex topography. most events (cluster C1) characterized by intensity short duration. C1 have largest occurrence frequency southern Austria occur from May September. Unlike less more evenly distributed (C2 C3) highly pronounced maximum onset event.
Язык: Английский
Процитировано
4Earth Surface Processes and Landforms, Год журнала: 2025, Номер 50(3)
Опубликована: Март 3, 2025
Abstract Rainfall erosivity is an essential factor affecting soil erosion, which expected to change under global climate change. Despite the existence of numerous rainfall models, there remains a scarcity research focusing on accuracy multi‐time scale models. In this study, subtropical regions central China (Hubei Province) were selected, where simulation performance six widely employed models was investigated using daily precipitation data from 70 meteorological stations spanning 2000 2020. Using optimal model, Kriging interpolation and Mann–Kendall test revealed significant temporal spatial variations in density. The results show that: (1) model more suitable for simulating Hubei Province. (2) mean annual Province 5894.25 MJ·mm·ha −1 ·h ·a , with large across regions. (3) density showed differences between different seasons, erosion most likely occur summer (June, July August). (4) distribution pattern highly consistent: long‐term high levels Xianning City, southeastern Province, risk high. findings study offer valuable insights into selection mountainous hilly areas provide reference assessing formulating control measures.
Язык: Английский
Процитировано
0International Soil and Water Conservation Research, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Ecological Modelling, Год журнала: 2025, Номер 505, С. 111120 - 111120
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0Journal of Sedimentary Environments, Год журнала: 2025, Номер unknown
Опубликована: Май 14, 2025
Язык: Английский
Процитировано
0Remote Sensing, Год журнала: 2024, Номер 16(7), С. 1186 - 1186
Опубликована: Март 28, 2024
Satellite precipitation products (SPPs) have emerged as an alternative to estimate rainfall erosivity. However, prior studies showed that SPPs tend underestimate erosivity but without reported bias-correction methods. This study evaluated the efficacy of two SPPs, namely, GPM_3IMERGHH (30-min and 0.1°) GPM_3IMERGDF (daily 0.1°), in estimating indices mainland China: average annual (R-factor) 10-year event (10-yr storm EI), by comparing with derived from gauge-observed hourly (Gauge-H). Results indicate yields higher accuracy than GPM_3IMERGHH, though both generally these indices. The Percent Bias (PBIAS) is −55.48% for R-factor −56.38% 10-yr EI using which reduces −10.86% −32.99% GPM_3IMERGDF. A method was developed based on systematic difference between SSPs Gauge-H. five-fold cross validation shows bias-correction, improve considerably, reduced. PBIAS decreases −0.06% 0.01%, −0.33% 0.14%, respectively, EI. estimated comparable obtained through Kriging interpolation Gauge-H better interpolated daily precipitation. Given their high temporal spatial resolution, timely updates, are viable data estimation bias correction.
Язык: Английский
Процитировано
2Journal of Hydrology Regional Studies, Год журнала: 2024, Номер 56, С. 102076 - 102076
Опубликована: Ноя. 23, 2024
Язык: Английский
Процитировано
2The Science of The Total Environment, Год журнала: 2024, Номер 947, С. 174334 - 174334
Опубликована: Июнь 30, 2024
Язык: Английский
Процитировано
1