Identification of response regulation governing ozone formation based on influential factors using a random forest approach DOI Creative Commons

Yan Huang,

Qingqing Wang,

Xiaojie Ou

и другие.

Heliyon, Год журнала: 2024, Номер 10(16), С. e36303 - e36303

Опубликована: Авг. 1, 2024

The pursuit of enhanced scientific, refined, and precise ozone air quality control continues to pose significant challenges. Using data visualization techniques random forest (RF) algorithms, the temporal distribution atmospheric pollutants interrelationship between O

Язык: Английский

Incorporating large-scale economic-environmental-energy coupling assessment and collaborative optimization into sustainable product footprint management: A graph-assisted life cycle energy efficiency enhancement approach DOI
Tingwei Zhang, Weimin Zhong, Yurong Liu

и другие.

Energy Conversion and Management, Год журнала: 2025, Номер 329, С. 119616 - 119616

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Spatial network characteristics and influencing factors of the synergistic effects of pollution reduction and carbon emission reduction in “Zero Waste City” clusters DOI

Peikun Su,

Xuhui Cong,

Liang Wang

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер 493, С. 144924 - 144924

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Data driven multi-objective economic-environmental robust optimization for refinery planning with multiple modes under uncertainty DOI
Jian Long,

Ning Wang,

Jia Zhai

и другие.

Computers & Industrial Engineering, Год журнала: 2024, Номер 198, С. 110697 - 110697

Опубликована: Ноя. 13, 2024

Язык: Английский

Процитировано

1

Identification of response regulation governing ozone formation based on influential factors using a random forest approach DOI Creative Commons

Yan Huang,

Qingqing Wang,

Xiaojie Ou

и другие.

Heliyon, Год журнала: 2024, Номер 10(16), С. e36303 - e36303

Опубликована: Авг. 1, 2024

The pursuit of enhanced scientific, refined, and precise ozone air quality control continues to pose significant challenges. Using data visualization techniques random forest (RF) algorithms, the temporal distribution atmospheric pollutants interrelationship between O

Язык: Английский

Процитировано

0