FeP nanoparticles anchored on N-doped carbon as ORR/OER bifunctional catalyst and its application in Zn-air batteries
Fuel,
Год журнала:
2025,
Номер
387, С. 134349 - 134349
Опубликована: Янв. 11, 2025
Язык: Английский
Single‐Atom Co Meets Remote Fe for a Synergistic Boost in Oxygen Electrocatalysis
Advanced Energy Materials,
Год журнала:
2025,
Номер
unknown
Опубликована: Март 16, 2025
Abstract
The
oxygen
electrocatalytic
activity
of
transition
metal
catalysts
can
be
tuned
by
tailoring
their
microstructure
to
optimize
electronic
configuration.
Here,
a
one‐step
Coordination‐Selective
Synthesis
strategy
is
developed
integrate
Co
single‐atom
sites
and
Fe‐based
nanoparticles
within
the
same
matrix,
enabling
long‐range
interactions
that
enhance
Co‐N
4
reactivity
improve
reduction
reaction
performance.
X‐ray
absorption
spectroscopy
confirmed
remote
modulate
electron
distribution
at
sites.
Structural
characterizations
reveal
optimal
catalyst,
50%
Fe
‐NC,
contains
metallic
Fe,
3
O
,
N
species.
Electrochemical
measurements
show
it
achieves
onset
half‐wave
potentials
0.984
0.927
V
versus
RHE,
surpassing
100%
‐NC
with
only
Additionally,
demonstrates
efficient
evolution
performance,
achieving
an
overpotential
298
mV
20
mA
cm
−2
comparable
RuO
2
.
Density
functional
theory
calculations
optimizes
O‐containing
intermediate
adsorption/desorption,
lowering
theoretical
overpotential.
Zn‐air
batteries
assembled
exhibited
superior
performance
Pt/C,
highlighting
its
potential
for
bifunctional
electrocatalysis.
This
study
provides
approach
designing
high‐performance
utilizing
synergistic
between
atomic
nanoscale
Язык: Английский
Carbon-loaded ordered PdZn alloys for efficient oxygen reduction in zinc–air batteries
Journal of Alloys and Compounds,
Год журнала:
2025,
Номер
unknown, С. 179887 - 179887
Опубликована: Март 1, 2025
Язык: Английский
Machine Learning-Accelerated Exploration on Element Doping-Triggering Material Performance Improvement for Energy Conversion and Storage Applications
Journal of Materials Chemistry A,
Год журнала:
2025,
Номер
unknown
Опубликована: Янв. 1, 2025
The
prediction
performances
of
machine
learning
in
the
field
element-doped
materials
for
energy
conversion
and
storage
applications
are
summarized.
Язык: Английский