International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
2D Materials, Год журнала: 2025, Номер 12(2), С. 023003 - 023003
Опубликована: Фев. 21, 2025
Abstract Neuromorphic computing is a low-power and energy efficient alternative to von Neumann that demands new materials architectures. Two-dimensional (2D) van der Waals ions are particularly favorable pair for neuromorphic computing. The large surface volume ratio of 2D layered makes them sensitive the presence ions, detected as orders magnitude change in electrical resistance. Quantum confinement crystals limits carrier scattering enhances mobility, which decreases power consumption. Moreover, crystal-ion can provide volatile non-volatile responses same device, well dynamic synaptic properties, such spike-timing dependent plasticity. These properties relevant because they mirror mechanisms involved biological learning memory. In this perspective, we first summarize recent progress field, categorize devices terms their (either electrostatic or electrochemical), highlight key functionalities these replicate. We underscore differences between artificial synapses, meant emulate functions versus those optimized compatibility with digital neural networks (ANNs). note use ionically gated transistors based on (2D IGTs) ANNs has primarily focused memory functions, rather than fully exploiting properties. assert energy-efficient operation IGTs, enabled by high capacitance density tunable ion dynamics, suited edge applications. Finally, our perspective realizing full potential systems will require bridging gap demonstrated practical implementations networks.
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0