A Sustainable Model for Forecasting Carbon Emission Trading Prices DOI Open Access
Jiaqing Chen,

Dongpeng Peng,

Zhiwei Liu

и другие.

Sustainability, Год журнала: 2024, Номер 16(19), С. 8324 - 8324

Опубликована: Сен. 25, 2024

Carbon trading has garnered considerable attention as a pivotal policy instrument for advancing carbon peaking and neutrality, which are essential components of sustainable development. The capacity to precisely anticipate the cost significant implications optimal deployment market mechanisms, economic advancement technological innovations in corporate emissions reduction, facilitation international energy adjustments. To this end, paper proposes novel price prediction tool that employs four-step process: decomposition, reconstruction, prediction, integration. This innovative approach first utilizes Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), then reconstructs decomposition set using multi-scale entropy (MSE), finally uses Long Short-Term Memory neural network model (LSTM) enhanced by Grey Wolf Optimizer (GWO) predict emission price. experimental results demonstrate achieves high accuracy both EU series China’s seven major markets, rates 99.10% 99.60% Hubei respectively. represents an improvement approximately 3.1% over ICEEMDAN-LSTM 0.91% ICEEMDAN-MSE-LSTM model, thereby contributing more efficient practices.

Язык: Английский

Advances in Sparrow Search Algorithm: A Comprehensive Survey DOI Open Access
Farhad Soleimanian Gharehchopogh,

Mohammad Namazi,

Laya Ebrahimi

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2022, Номер 30(1), С. 427 - 455

Опубликована: Авг. 22, 2022

Язык: Английский

Процитировано

232

Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms DOI
Kefei Zhang, Xiaolin Yang, Teng Wang

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 405, С. 136959 - 136959

Опубликована: Апрель 1, 2023

Язык: Английский

Процитировано

55

Forecasting carbon price in China using a novel hybrid model based on secondary decomposition, multi-complexity and error correction DOI
Hong Yang, Xiaodie Yang, Guohui Li

и другие.

Journal of Cleaner Production, Год журнала: 2023, Номер 401, С. 136701 - 136701

Опубликована: Март 9, 2023

Язык: Английский

Процитировано

50

Variational mode decomposition and bagging extreme learning machine with multi-objective optimization for wind power forecasting DOI
Matheus Henrique Dal Molin Ribeiro, Ramon Gomes da Silva, Sinvaldo Rodrigues Moreno

и другие.

Applied Intelligence, Год журнала: 2024, Номер 54(4), С. 3119 - 3134

Опубликована: Фев. 1, 2024

Язык: Английский

Процитировано

30

Enhancing carbon price point-interval multi-step-ahead prediction using a hybrid framework of autoformer and extreme learning machine with multi-factors DOI

Baoli Wang,

Zhaocai Wang, Zhiyuan Yao

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126467 - 126467

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

8

The spatiotemporal evolution pattern of urban resilience in the Yangtze River Delta urban agglomeration based on TOPSIS-PSO-ELM DOI
Chenhong Xia,

Guofang Zhai

Sustainable Cities and Society, Год журнала: 2022, Номер 87, С. 104223 - 104223

Опубликована: Окт. 2, 2022

Язык: Английский

Процитировано

69

Cooperative ensemble learning model improves electric short-term load forecasting DOI
Matheus Henrique Dal Molin Ribeiro, Ramon Gomes da Silva, Gabriel Trierweiler Ribeiro

и другие.

Chaos Solitons & Fractals, Год журнала: 2022, Номер 166, С. 112982 - 112982

Опубликована: Дек. 21, 2022

Язык: Английский

Процитировано

50

Robust Runoff Prediction With Explainable Artificial Intelligence and Meteorological Variables From Deep Learning Ensemble Model DOI Open Access
Junhao Wu, Zhaocai Wang, Jinghan Dong

и другие.

Water Resources Research, Год журнала: 2023, Номер 59(9)

Опубликована: Сен. 1, 2023

Abstract Accurate runoff forecasting plays a vital role in issuing timely flood warnings. Whereas, previous research has primarily focused on historical and precipitation variability while disregarding other factors' influence. Additionally, the prediction process of most machine learning models is opaque, resulting low interpretability model predictions. Hence, this study develops an ensemble deep to forecast from three hydrological stations. Initially, time‐varying filtered based empirical mode decomposition employed decompose series into several internal functions (IMFs). Subsequently, complexity each IMF component evaluated by multi‐scale permutation entropy, IMFs are classified high‐ low‐frequency portions entropy values. Considering high‐frequency still exhibit great volatility, robust local mean adopted perform secondary portions. Then, meteorological variables processed Relief algorithm variance inflation factor features as inputs, individual subsequences preliminary outputs bidirectional gated recurrent unit extreme models. Random forests (RF) introduced nonlinear predicted sub‐models obtain final results. The proposed outperforms various evaluation metrics. Meanwhile, due opaque nature models, shapley assess contribution selected variable long‐term trend runoff. could serve essential reference for precise warning.

Язык: Английский

Процитировано

35

Flood discharge prediction using improved ANFIS model combined with hybrid particle swarm optimisation and slime mould algorithm DOI
Sandeep Samantaray,

Pratik Sahoo,

Abinash Sahoo

и другие.

Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(35), С. 83845 - 83872

Опубликована: Июнь 23, 2023

Язык: Английский

Процитировано

32

Forecasting carbon dioxide emission price using a novel mode decomposition machine learning hybrid model of CEEMDAN‐LSTM DOI Creative Commons
Po Yun, Xiaodi Huang, Yaqi Wu

и другие.

Energy Science & Engineering, Год журнала: 2022, Номер 11(1), С. 79 - 96

Опубликована: Сен. 18, 2022

Abstract Global carbon dioxide emissions have become a great threat to economic sustainability and human health. The market is recognized as the most promising mean curb emissions, furthermore, price forecasting will promote role of in reduction achieve targets at lower costs for emission entities. However, there are still some technical problems prediction, such mode mixing larger reconstruction error traditional empirical decomposition‐type models. Therefore, innovation this paper constructing novel prediction model complete ensemble decomposition with adaptive noise (CEEMDAN)‐long short‐term memory (LSTM), that combines advantages CEEMDAN decomposing multiscale time‐frequency signals LSTM fitting financial signals. results show proposed CEEMDAN‐LSTM has significant accuracy predicting complex expectation indicators root square error, absolute percentage direction 0.638342, 0.448695, 0.015666, 0.687631, respectively, which better than other benchmark Further evidence convince performance superior long‐term medium‐term performance. That concludes reliable method reveal price‐driving mechanism from point characteristics. Particularly, more accurate can provide valuable reference entities green companies judge situation formulate quantitative transactions.

Язык: Английский

Процитировано

30