Turing patterns in a networked vegetation model DOI Creative Commons

Xiaomei Bao,

Canrong Tian

Mathematical Biosciences & Engineering, Год журнала: 2024, Номер 21(11), С. 7601 - 7620

Опубликована: Янв. 1, 2024

A vegetation model composed of water and plants was proposed by introducing a weighted graph Laplacian operator into the reaction-diffusion dynamics. We showed global existence uniqueness solution via monotone iterative sequence. The parameter space Turing patterns for plant behavior is obtained based on analysis eigenvalues graph, while amplitude equation determining stability weakly nonlinear analysis. also show that optimal rainfall only determined density water. By some numerical simulations, we examine individual effect diffusion term formation regular patterns. large induces stable

Язык: Английский

Far-from-Equilibrium Traveling Pulses in Sloped Semiarid Environments Driven by Autotoxicity Effects DOI
Gabriele Grifó, Annalisa Iuorio, Frits Veerman

и другие.

SIAM Journal on Applied Mathematics, Год журнала: 2025, Номер 85(1), С. 188 - 209

Опубликована: Янв. 27, 2025

Язык: Английский

Процитировано

2

Pattern dynamics of vegetation based on optimal control theory DOI

Li-Feng Hou,

Li Li, Lili Chang

и другие.

Nonlinear Dynamics, Год журнала: 2024, Номер unknown

Опубликована: Сен. 5, 2024

Язык: Английский

Процитировано

6

Stationary and Oscillatory patterned solutions in three-compartment reaction–diffusion systems: Theory and application to dryland ecology DOI Creative Commons
Giancarlo Consolo, Carmela Curró, Gabriele Grifó

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 186, С. 115287 - 115287

Опубликована: Июль 23, 2024

This work aims at elucidating the conditions under which stationary and oscillatory periodic patterns may emerge in a class of one-dimensional three-compartments reaction–diffusion models where one interacting species does not undergo any spatial dispersal. To this purpose, linear stability analysis is firstly employed to deduce system undergoes Turing or wave instability as well extract information on main features that characterize corresponding patterned solutions onset. Then, multiple-scale weakly nonlinear carried out describe time evolution pattern amplitude close bifurcation thresholds above-mentioned instabilities. Finally, provide quantitative estimation most relevant features, an illustrative example context dryland ecology addressed. It deals with generalization Klausmeier vegetation model for flat arid environments describes interaction among biomass, soil water toxic compounds. Numerical simulations are also used corroborate theoretical findings gain some useful insights into ecological response ecosystems variable environmental conditions.

Язык: Английский

Процитировано

5

Travelling waves in dryland ecology: continuous and discontinuous connections in a hyperbolic vegetation model DOI
Gabriele Grifó, Carmela Curró, Giovanna Valenti

и другие.

Nonlinear Dynamics, Год журнала: 2025, Номер unknown

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

Vegetation pattern formation and transition in dryland ecosystems with finite soil resources and inertia DOI Creative Commons
Giancarlo Consolo, Carmela Curró, Gabriele Grifó

и другие.

Physica D Nonlinear Phenomena, Год журнала: 2025, Номер unknown, С. 134601 - 134601

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Modeling vegetation patterning on sloped terrains: The role of toxic compounds DOI Creative Commons
Giancarlo Consolo, Gabriele Grifó, Giovanna Valenti

и другие.

Physica D Nonlinear Phenomena, Год журнала: 2023, Номер 459, С. 134020 - 134020

Опубликована: Дек. 13, 2023

Vegetation patterning processes taking place on sloped terrains are here investigated through a class of three-compartments 1D reaction-advection-diffusion models enclosing the effects associated with presence toxic compounds. Focus is given to transition from uniformly-vegetated area desert state which occurs formation an intermediate characterized by non-stationary vegetation stripes. To this aim, linear stability analysis addressed characterize mechanism wave instability, responsible for emergence oscillatory Turing patterns. In detail, provides critical value main control parameter as well wavelength and migration speed at onset instability. Moreover, multiple-scale weakly nonlinear performed describe time evolution pattern amplitude close bifurcation threshold. Theoretical investigations complemented numerical simulations carried out extension Klausmeier kinetics that explicitly takes into account interaction between autotoxicity biomass. Numerical results provide several insights how interplay among mean annual rainfall, plant mortality plant's sensitivity toxicity gives rise different ecological scenarios.

Язык: Английский

Процитировано

8

Bifurcations analysis and pattern formation in a plant-water model with nonlocal grazing DOI
Yong Wang, Jia‐Xin Yin, Rui Yuan

и другие.

Nonlinear Dynamics, Год журнала: 2024, Номер unknown

Опубликована: Окт. 17, 2024

Язык: Английский

Процитировано

1

Turing patterns in a networked vegetation model DOI Creative Commons

Xiaomei Bao,

Canrong Tian

Mathematical Biosciences & Engineering, Год журнала: 2024, Номер 21(11), С. 7601 - 7620

Опубликована: Янв. 1, 2024

A vegetation model composed of water and plants was proposed by introducing a weighted graph Laplacian operator into the reaction-diffusion dynamics. We showed global existence uniqueness solution via monotone iterative sequence. The parameter space Turing patterns for plant behavior is obtained based on analysis eigenvalues graph, while amplitude equation determining stability weakly nonlinear analysis. also show that optimal rainfall only determined density water. By some numerical simulations, we examine individual effect diffusion term formation regular patterns. large induces stable

Язык: Английский

Процитировано

0