Thin-Walled Structures, Год журнала: 2024, Номер 204, С. 112318 - 112318
Опубликована: Авг. 6, 2024
Язык: Английский
Thin-Walled Structures, Год журнала: 2024, Номер 204, С. 112318 - 112318
Опубликована: Авг. 6, 2024
Язык: Английский
Journal of Vibration and Control, Год журнала: 2025, Номер unknown
Опубликована: Март 12, 2025
This paper presents the nonlinear chaotic mechanical model for magneto-electric elastic (MEE) laminated nanoplates, with flexomagnetoelectric (FME) effect, subjected to multi-physical field excitation. Utilizing high-order shear deformation theory (HSDT), Hamilton’s principle, and strain-displacement relationships from von Karman’s theory, governing equations system are derived. The application of nonlocal strain gradient (NSGT) facilitates consideration size effect in system. employment Airy stress function manages nonlinear-nonlocal terms control equation. accurate solution approach is ultimately formulated by combining dual-mode Galerkin method fourth-order Runge-Kutta method. outcomes indicate that behavior MEE nanoplates substantially affected FME hygrothermal conditions, electromagnetic field. research conducted this intends offer comprehensive theoretical basis utilization nanomaterials industrial engineering, alongside derivation criteria essential mitigating controlling behaviors within
Язык: Английский
Процитировано
0Chaos Solitons & Fractals, Год журнала: 2025, Номер 198, С. 116540 - 116540
Опубликована: Май 16, 2025
Язык: Английский
Процитировано
0Alexandria Engineering Journal, Год журнала: 2024, Номер 116, С. 35 - 54
Опубликована: Дек. 26, 2024
Язык: Английский
Процитировано
2Thin-Walled Structures, Год журнала: 2024, Номер 204, С. 112318 - 112318
Опубликована: Авг. 6, 2024
Язык: Английский
Процитировано
0