DB-Net and DVR-Net: Optimized New Deep Learning Models for Efficient Cardiovascular Disease Prediction DOI Creative Commons

Aymin Javed,

Nadeem Javaid, Nabil Alrajeh

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(22), С. 10516 - 10516

Опубликована: Ноя. 15, 2024

Cardiovascular Disease (CVD) is one of the main causes death in recent years. To overcome challenges faced during diagnosing CVD at an early stage, deep learning has been used. With advancements technology, clinical practice health care industry likely to transform significantly. predict CVD, we constructed two models: Dense Belief Network (DB-Net) and Deep Vanilla Recurrent (DVR-Net). Proximity Weighted Random Affine Shadow sampling balancing technique used for highly imbalanced Heart Health Indicator dataset. SHapley Additive exPlanations exhibits each feature’s contribution. It visualize features contribution output DB-Net DVR-Net prediction. Furthermore, 10-Fold Cross Validation performed evaluating proposed models performance. Cross-dataset evaluation also conducted on see how well our generalize unseen data. Various measures are assessment models. The outperforms all base by achieving accuracy 91%, F1-score precision 93%, recall 89%, execution time 1883 s 30 epochs with batch size 32. beats state-of-art 90%, 2853

Язык: Английский

Sliding Window Iterative Identification for Nonlinear Closed‐Loop Systems Based on the Maximum Likelihood Principle DOI
Lijuan Liu, Fu Li, Wei Liu

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 1, 2024

ABSTRACT The parameter estimation problem for the nonlinear closed‐loop systems with moving average noise is considered in this article. For purpose of overcoming difficulty that dynamic linear module and static lead to identification complexity issues, unknown parameters from both modules are included a vector by use key term separation technique. Furthermore, an sliding window maximum likelihood least squares iterative algorithm gradient derived estimate parameters. numerical simulation indicates efficiency proposed algorithms.

Язык: Английский

Процитировано

8

Integrating Differential Evolution into Gazelle Optimization for advanced global optimization and engineering applications DOI Creative Commons
Saptadeep Biswas, Gyan Singh, Biswajit Maiti

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 434, С. 117588 - 117588

Опубликована: Ноя. 29, 2024

Язык: Английский

Процитировано

6

Nonlinear Marine Predator Algorithm for Robust Identification of Fractional Hammerstein Nonlinear Model under Impulsive Noise with Application to Heat Exchanger System DOI
Zeshan Aslam Khan, Taimoor Ali Khan,

Muhammad Waqar

и другие.

Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2025, Номер unknown, С. 108809 - 108809

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Design of quantum computing-based avain navigation optimization algorithm for parameter estimation of input nonlinear output error model with key term separation DOI
Khizer Mehmood, Naveed Ishtiaq Chaudhary, Zeshan Aslam Khan

и другие.

Modern Physics Letters A, Год журнала: 2025, Номер unknown

Опубликована: Март 28, 2025

In recent years, quantum computing has been applied in optimizing different challenging systems the domains of science and engineering. This work reflects identification input nonlinear output error (I-NOE) model by using Quantum-based avian navigation optimizer algorithm (QANA). QANA is an evolutionary method inspired precision migratory birds. The assessment achieved on various iterations, population, noise levels. complexity, statistical, convergence investigation with arithmetic optimization (AOA), coati (COA), grey wolf (GWO), particle swarm (PSO), synergistic (SSOA), velocity pausing (VPPSO) approves robustness for I-NOE identification.

Язык: Английский

Процитировано

0

The Aitken Accelerated Gradient Algorithm for a Class of Dual‐Rate Volterra Nonlinear Systems Utilizing the Self‐Organizing Map Technique DOI
Junwei Wang, Weili Xiong, Feng Ding

и другие.

International Journal of Robust and Nonlinear Control, Год журнала: 2025, Номер unknown

Опубликована: Апрель 22, 2025

ABSTRACT This article focuses on the parameter estimation issues for dual‐rate Volterra fractional‐order autoregressive moving average models. In case of sampling, we derive a identification model system and implement intersample output with help an auxiliary method. Then, combined self‐organizing map technique, propose Aitken multi‐innovation gradient‐based iterative algorithm. The parameters are estimated using algorithm, whereas differential orders determined Moreover, computational cost proposed algorithm is analyzed floating point operation. Finally, convergence analysis simulation examples show effectiveness

Язык: Английский

Процитировано

0

Mathematical analysis of fractional Chlamydia pandemic model DOI Creative Commons
Zuhur Alqahtani, Areej Almuneef, Mahmoud H. DarAssi

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Дек. 28, 2024

Язык: Английский

Процитировано

3

DB-Net and DVR-Net: Optimized New Deep Learning Models for Efficient Cardiovascular Disease Prediction DOI Creative Commons

Aymin Javed,

Nadeem Javaid, Nabil Alrajeh

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(22), С. 10516 - 10516

Опубликована: Ноя. 15, 2024

Cardiovascular Disease (CVD) is one of the main causes death in recent years. To overcome challenges faced during diagnosing CVD at an early stage, deep learning has been used. With advancements technology, clinical practice health care industry likely to transform significantly. predict CVD, we constructed two models: Dense Belief Network (DB-Net) and Deep Vanilla Recurrent (DVR-Net). Proximity Weighted Random Affine Shadow sampling balancing technique used for highly imbalanced Heart Health Indicator dataset. SHapley Additive exPlanations exhibits each feature’s contribution. It visualize features contribution output DB-Net DVR-Net prediction. Furthermore, 10-Fold Cross Validation performed evaluating proposed models performance. Cross-dataset evaluation also conducted on see how well our generalize unseen data. Various measures are assessment models. The outperforms all base by achieving accuracy 91%, F1-score precision 93%, recall 89%, execution time 1883 s 30 epochs with batch size 32. beats state-of-art 90%, 2853

Язык: Английский

Процитировано

0