
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Март 25, 2025
Язык: Английский
Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Март 25, 2025
Язык: Английский
Groundwater for Sustainable Development, Год журнала: 2023, Номер 23, С. 101049 - 101049
Опубликована: Ноя. 1, 2023
Groundwater plays a pivotal role as global source of drinking water. To meet sustainable development goals, it is crucial to consistently monitor and manage groundwater quality. Despite its significance, there are currently no specific tools available for assessing trace/heavy metal contamination in groundwater. Addressing this gap, our research introduces an innovative approach: the Quality Index (GWQI) model, developed tested Savar sub-district Bangladesh. The GWQI model integrates ten water quality indicators, including six heavy metals, collected from 38 sampling sites study area. enhance precision assessment, employed established machine learning (ML) techniques, evaluating model's performance based on factors such uncertainty, sensitivity, reliability. A major advancement incorporation metals into framework index model. best authors knowledge, marks first initiative develop encompassing heavy/trace elements. Findings assessment revealed that area ranged 'good' 'fair,' indicating most indicators met standard limits set by Bangladesh government World Health Organization. In predicting scores, artificial neural networks (ANN) outperformed other ML models. Performance metrics, root mean square error (RMSE), (MSE), absolute (MAE) training (RMSE = 0.361; MSE 0.131; MAE 0.262), testing 0.001; 0.00; 0.001), prediction evaluation statistics (PBIAS 0.000), demonstrated superior effectiveness ANN. Moreover, exhibited high sensitivity (R2 1.0) low uncertainty (less than 2%) rating These results affirm reliability novel monitoring management, especially regarding metals.
Язык: Английский
Процитировано
61Journal of Environmental Management, Год журнала: 2024, Номер 354, С. 120246 - 120246
Опубликована: Фев. 14, 2024
Язык: Английский
Процитировано
21Environmental Processes, Год журнала: 2025, Номер 12(1)
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
5Chemosphere, Год журнала: 2025, Номер 372, С. 144074 - 144074
Опубликована: Янв. 13, 2025
Язык: Английский
Процитировано
3Ecological Informatics, Год журнала: 2023, Номер 78, С. 102324 - 102324
Опубликована: Окт. 2, 2023
Язык: Английский
Процитировано
26Groundwater for Sustainable Development, Год журнала: 2024, Номер 25, С. 101122 - 101122
Опубликована: Фев. 16, 2024
Язык: Английский
Процитировано
16Journal of Environmental Management, Год журнала: 2024, Номер 351, С. 119896 - 119896
Опубликована: Янв. 3, 2024
Язык: Английский
Процитировано
15Environmental Research, Год журнала: 2023, Номер 242, С. 117769 - 117769
Опубликована: Ноя. 28, 2023
Язык: Английский
Процитировано
18Environmental Pollution, Год журнала: 2024, Номер 345, С. 123449 - 123449
Опубликована: Янв. 24, 2024
Pentachlorophenol (PCP) is a commonly found recalcitrant and toxic groundwater contaminant that resists degradation, bioaccumulates, has potential for long-range environmental transport. Taking proper actions to deal with the pollutant accounting life cycle consequences requires better understanding of its behavior in subsurface. We recognize huge enhancing decision-making at contaminated sites arrival machine learning (ML) techniques applications. used ML enhance dynamics PCP transport properties subsurface, determine key hydrochemical hydrogeological drivers affecting fate. demonstrate how this complementary knowledge, provided by data-driven methods, may enable more targeted planning monitoring remediation two highly Swedish sites, where method was validated. evaluated 6 interpretable 3 linear regressors non-linear (i.e., tree-based) regressors, predict concentration groundwater. The modeling results indicate simple models were be useful prediction observations datasets without any missing values, while tree-based suitable containing values. Considering values are common collected during site investigations, could significant importance planners managers, ultimately reducing investigation costs. Furthermore, we interpreted proposed using SHAP (SHapley Additive exPlanations) approach decipher different simulation critical hydrogeochemical variables. Among these, sum chlorophenols highest significance analyses. Setting aside from model, tetra chlorophenols, dissolved organic carbon, conductivity importance. Accordingly, methods potentially improve contamination dynamics, filling gaps knowledge remain when sophisticated deterministic approaches.
Язык: Английский
Процитировано
7Desalination and Water Treatment, Год журнала: 2025, Номер 321, С. 101039 - 101039
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1