Image based Modeling and Control for Batch Processes DOI Creative Commons
Aswin Chandrasekar,

Kevork Baghdassarian,

Farshad Moayedi

и другие.

Journal of Process Control, Год журнала: 2024, Номер 143, С. 103314 - 103314

Опубликована: Сен. 16, 2024

Язык: Английский

Hybrid modeling of first-principles and machine learning: A step-by-step tutorial review for practical implementation DOI
Parth Shah,

Silabrata Pahari,

Raj Bhavsar

и другие.

Computers & Chemical Engineering, Год журнала: 2024, Номер unknown, С. 108926 - 108926

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

11

Machine learning-based input-augmented Koopman modeling and predictive control of nonlinear processes DOI
Zhaoyang Li, Minghao Han, Dat-Nguyen Vo

и другие.

Computers & Chemical Engineering, Год журнала: 2024, Номер 191, С. 108854 - 108854

Опубликована: Авг. 24, 2024

Язык: Английский

Процитировано

7

Multi-objective optimization for sustainable and economical polycarbonate production with reaction kinetics inference for real-world industrial process DOI

Eunbyul Lee,

Minsu Kim, Il Moon

и другие.

Chemical Engineering Journal, Год журнала: 2024, Номер 490, С. 151484 - 151484

Опубликована: Апрель 25, 2024

Язык: Английский

Процитировано

6

Physics-informed neural networks for state reconstruction of hydrogen energy transportation systems DOI Creative Commons
Lu Zhang, Junyao Xie,

Qingqing Xu

и другие.

Computers & Chemical Engineering, Год журнала: 2024, Номер 192, С. 108898 - 108898

Опубликована: Ноя. 2, 2024

Язык: Английский

Процитировано

4

Advancing Kinetic Study of Catalytic Reaction: A Hybrid Modeling Approach for Predicting Effective Activation Energies DOI

Silabrata Pahari,

Chi H. Lee, Denis Johnson

и другие.

ACS Catalysis, Год журнала: 2025, Номер unknown, С. 9544 - 9554

Опубликована: Май 20, 2025

Язык: Английский

Процитировано

0

Data-driven plant-model mismatch detection for dynamic matrix control systems using sum-of-norms regularization DOI
Yimiao Shi, Xiaodong Xu, Yuan Yuan

и другие.

Computers & Chemical Engineering, Год журнала: 2024, Номер 190, С. 108823 - 108823

Опубликована: Авг. 13, 2024

Язык: Английский

Процитировано

2

Integrating Deep Neural Networks for Hybrid Modeling of Complex Chemical Processes: Estimation of Spatiotemporally Varying Parameters in Moving Boundary Problems DOI

Silabrata Pahari,

Parth Shah, Joseph Sang‐Il Kwon

и другие.

2022 American Control Conference (ACC), Год журнала: 2024, Номер 2, С. 5370 - 5375

Опубликована: Июль 10, 2024

Язык: Английский

Процитировано

1

Leveraging neural networks to estimate parameters with confidence intervals DOI Creative Commons

Nigel Mathias,

Lauren Weir, Brandon Corbett

и другие.

The Canadian Journal of Chemical Engineering, Год журнала: 2024, Номер unknown

Опубликована: Авг. 7, 2024

Abstract This manuscript presents a proof of concept for the estimation parameters in bioprocess while providing reliable confidence intervals. Specifically, Bayesian inference is used to estimate uncertainty prediction parameter due presence measurement noise process. The resultant joint probability distribution utilized infer interval estimates. method numerically applied using technique known as nested sampling. algorithm iteratively samples from pre‐determined range values compare model predictions and obtain density function. One challenge typically associated with this determination error, especially when high‐fidelity dynamic being utilized. For motivating example present manuscript, where simulated considered, use provided by Sartorius AG part poses computational challenges. To overcome challenge, universal approximator such parameterized neural network used. designed simulate results first principles (while also capturing dependence on output), once trained can provide near instantaneous making sampling computationally tractable application. Simulation demonstrate feasibility capability proposed approach.

Язык: Английский

Процитировано

0

Empowering Hybrid Models with Attention-Based Time-series Transformers: A Case Study in Batch Crystallization DOI
Niranjan Sitapure, Joseph Sang‐Il Kwon

2022 American Control Conference (ACC), Год журнала: 2024, Номер 2004, С. 62 - 67

Опубликована: Июль 10, 2024

Язык: Английский

Процитировано

0

A Hybrid Modeling Framework for Catalytic Systems: Sensitivity Analysis and Estimation of Activation Energies DOI

Silabrata Pahari,

Parth Shah, Chi H. Lee

и другие.

2022 American Control Conference (ACC), Год журнала: 2024, Номер 24, С. 5376 - 5381

Опубликована: Июль 10, 2024

Язык: Английский

Процитировано

0