
The Journal of Finance and Data Science, Год журнала: 2024, Номер unknown, С. 100143 - 100143
Опубликована: Окт. 1, 2024
Язык: Английский
The Journal of Finance and Data Science, Год журнала: 2024, Номер unknown, С. 100143 - 100143
Опубликована: Окт. 1, 2024
Язык: Английский
Digital Chemical Engineering, Год журнала: 2025, Номер unknown, С. 100219 - 100219
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2025, Номер 17(7), С. 2933 - 2933
Опубликована: Март 26, 2025
This study presents an improved deep-learning model, termed Enhanced Time Series Mixer (E-TSMixer), for the prediction of particulate matter. By analyzing temporal evolution PM2.5 concentrations from multivariate monitoring data, model demonstrates significant capabilities while maintaining consistency with observed pollutant transport characteristics in urban boundary layer. In E-TSMixer, a fully connected output layer is proposed to enhance predictive capability complex spatiotemporal dependencies. The relevant data on air quality and traffic flow are fused achieve high-precision predictions through time-series forecasting model. An asymmetric penalty mechanism added dynamically optimize loss function. Experimental results indicate that E-TSMixer achieves higher accuracy PM2.5, which significantly outperforms traditional models. Additionally, intelligent dual regulation fixed dynamic threshold introduced combined decision-making real-time adjustments frequency, routes, timing water truck operation practice.
Язык: Английский
Процитировано
0The Journal of Finance and Data Science, Год журнала: 2024, Номер unknown, С. 100143 - 100143
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
0