E-Commerce Demand Forecasting Based on Time Series Analysis and Commodity Classification DOI
Zhicheng Pan,

Pengyang Wei

Опубликована: Ноя. 25, 2023

The problem of demand forecasting for e-commerce retail merchants is a common challenge in the industry. key lies how to accurately predict customer and solve practical problems based on prediction results. research this topic facilitates platforms adjust their inventory timely manner so as not only satisfy but also effectively reduce costs operating costs. It line with development trend industry, such intelligence, personalization customization, integration online offline. In paper, hybrid ARIMA-LR model first used forecast different storage sites e-commerce. This combines an autoregressive sliding average (ARIMA) linear regression (LR) improve accuracy stability. Then, genetic algorithm select best classification metrics. performance metrics, most suitable metrics from them classify time series. By classifying series into categories, patterns features same type can be better understood analyzed. helps extract useful information, identify potential trends patterns, provide decision support management warehouse sites.

Язык: Английский

A unified new-information-based accumulating generation operator based on feature decoupling for multi-characteristic time series forecasting DOI
Song Ding, Zhijian Cai, Juntao Ye

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 154, С. 111310 - 111310

Опубликована: Фев. 2, 2024

Язык: Английский

Процитировано

8

A novel marine predator whale optimization algorithm for global numerical optimization DOI
Ya Su, Yi Liu

Engineering Optimization, Год журнала: 2025, Номер unknown, С. 1 - 37

Опубликована: Март 31, 2025

Процитировано

1

A novel multi-fractional multivariate grey model for city air quality index prediction in China DOI
Lanxi Zhang, Xin Ma

Expert Systems with Applications, Год журнала: 2024, Номер 257, С. 125010 - 125010

Опубликована: Авг. 8, 2024

Язык: Английский

Процитировано

4

Decomposition combining averaging seasonal-trend with singular spectrum analysis and a marine predator algorithm embedding Adam for time series forecasting with strong volatility DOI
M Wang,

Yu Meng,

Lei Sun

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126864 - 126864

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

A new adaptive grey prediction model and its application DOI
Jianming Jiang, Ming Zhang,

Zhongyong Huang

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 120, С. 515 - 522

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

Deciphering the pulse of the city: An exploration of the natural features of metro passenger flow using XAI DOI
Tianli Tang, Jian Zhang, Siyuan Chen

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 111097 - 111097

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

An innovative nonlinear grey system model with generalized fractional operators and its application DOI

Jianguo Zheng,

Meixin Huang,

Jiale Zhang

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 125, С. 463 - 479

Опубликована: Апрель 22, 2025

Язык: Английский

Процитировано

0

Forecasting China’s CO2 emissions and identifying key drivers: an application of the improved RFAGM model and LMDI decomposition methods DOI
Xuan Yang,

Guanggui Ran

International Journal of Sustainable Development & World Ecology, Год журнала: 2024, Номер 31(5), С. 523 - 536

Опубликована: Янв. 7, 2024

China, the world's largest CO2 emitter, has pledged to reduce its carbon intensity by 18% 2025, which requires accurate forecasting of emissions and their drivers. However, existing gray models have limitations in dealing with fluctuating data or long-time series data, they often suffer from overfitting poor generalization ability. Moreover, there is a lack research judgment on future changes emission To address these issues, this study proposes fractional order adaptive rolling model (RFAGM(1,1)) that optimizes background generation incorporates mechanism. We apply RFAGM(1,1) forecast China's emissions, GDP, population, consumption raw coal, crude oil, natural gas 2020 2025. Our results show achieves significantly higher accuracy than standard models, except for population. The projections indicate China will meet reduction target Furthermore, LMDI decomposition reveals economic growth population positive cumulative impacts (245.68% 11.95%, respectively), while energy structural negative (−151.60% −6.02%, respectively). improved enables evaluation climate policies, factor analysis provides valuable insights developing evidence-based strategies achieve peaking neutrality goals 2030/2060.

Язык: Английский

Процитировано

3

Multi-strategy Hybrid Coati Optimizer: A Case Study of Prediction of Average Daily Electricity Consumption in China DOI
Gang Hu, Sa Wang, Essam H. Houssein

и другие.

Journal of Bionic Engineering, Год журнала: 2024, Номер 21(5), С. 2540 - 2568

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

3

An innovative prediction algorithm based on grey modeling theory and the marine predators algorithm for short-term carbon dioxide emissions in China DOI
Chong Liu, Wen-Ze Wu, Wanli Xie

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 137, С. 109066 - 109066

Опубликована: Авг. 11, 2024

Язык: Английский

Процитировано

3