An Improved Constrained Multiobjective Optimization for Energy Multimodal Transport Among Clustering Islands DOI Creative Commons

Xu Yang,

Fuxing Zhang,

Honglei Miao

и другие.

Mathematics, Год журнала: 2024, Номер 12(24), С. 3926 - 3926

Опубликована: Дек. 13, 2024

Clustering islands located close to each other and sharing some common characteristics offer diverse unique opportunities for tourism, trade, research, especially take a crucial part in the military. Remote from inland, have relatively limited resources, which makes them dependent on imported energy sources such as oil gas or renewable energy. However, there are few studies about security of clustering islands. To this end, study proposes novel optimization framework that aims optimize use their different types among improve stability whole internet via multilayer transportation network. The network also enables serve emergency power situations. Specifically, we construct an assignment model considers multimodal transport, multiobjective, multiple constraints. address issue, develop unconstrained-individuals guiding constrained multiobjective algorithm, named uiCMOA. Experimental results demonstrate effectiveness efficiency proposed algorithm.

Язык: Английский

A discrete artificial bee colony algorithm and its application in flexible flow shop scheduling with assembly and machine deterioration effect DOI
Ming Li, Ching‐Ter Chang, Zhi Liu

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 159, С. 111593 - 111593

Опубликована: Апрель 16, 2024

Язык: Английский

Процитировано

8

Ship pipe production optimization method for solving distributed heterogeneous energy-efficient flexible flowshop scheduling with mobile resource limitation DOI
Hua Xuan, Xiaofan Zhang, Yixuan Wu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126603 - 126603

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

A multi-objective Immune Balancing Algorithm for Distributed Heterogeneous Batching-integrated Assembly Hybrid Flowshop Scheduling DOI
Haiqiang Hao, Haiping Zhu, Yabo Luo

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 259, С. 125288 - 125288

Опубликована: Сен. 12, 2024

Язык: Английский

Процитировано

5

A Q-learning grey wolf optimizer for a distributed hybrid flowshop rescheduling problem with urgent job insertion DOI
Shuilin Chen, Jianguo Zheng

Journal of Applied Mathematics and Computing, Год журнала: 2025, Номер unknown

Опубликована: Янв. 17, 2025

Язык: Английский

Процитировано

0

Double Deep Q-Network-Based Solution to a Dynamic, Energy-Efficient Hybrid Flow Shop Scheduling System with the Transport Process DOI Creative Commons
Qinglei Zhang, Han Si,

Jiyun Qin

и другие.

Systems, Год журнала: 2025, Номер 13(3), С. 170 - 170

Опубликована: Фев. 28, 2025

In this paper, a dynamic energy-efficient hybrid flow shop (TDEHFSP) scheduling model is proposed, considering random arrivals of new jobs and transport by transfer vehicles. To simultaneously optimise the maximum completion time total energy consumption, co-evolutionary approach (DDQCE) using double deep Q-network (DDQN) introduced, where global local search tasks are assigned to different populations use computational resources. addition, multi-objective NEW heuristic strategy implemented generate an initial population with enhanced convergence diversity. The DDQCE incorporates based on interval ‘left shift’ turn-on/off mechanisms, alongside rescheduling manage disturbances. 36 test instances varying sizes, simplified from excavator boom manufacturing process, designed for comparative experiments traditional algorithms. experimental results demonstrate that achieves 40% more Pareto-optimal solutions compared NSGA-II MOEA/D while requiring 10% less time, confirming algorithm efficiently solves TDEHFSP problem.

Язык: Английский

Процитировано

0

Q-learning based estimation of distribution algorithm for scheduling distributed heterogeneous flexible flow-shop with mixed buffering limitation DOI
Hua Xuan, Qianqian Zheng,

Lin Lv

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 149, С. 110537 - 110537

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

0

Cooperative optimisation of production and transportation considering order weight and sequence-dependent setup time DOI
Tao Jiang, Chaoming Hu, Bing Yan

и другие.

International Journal of Logistics Research and Applications, Год журнала: 2025, Номер unknown, С. 1 - 19

Опубликована: Март 24, 2025

Язык: Английский

Процитировано

0

A cooperative Q-learning-based memetic algorithm for distributed assembly heterogeneous flexible flowshop scheduling DOI
Jiawen Deng, Jihui Zhang, Shengxiang Yang

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 128198 - 128198

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A novel and efficient mathematical optimization model for multi-stage assembly flow shop considering post-processing DOI
José Renatho da Silva Santana, Hélio Yochihiro Fuchigami

Journal of Industrial and Production Engineering, Год журнала: 2024, Номер 42(1), С. 1 - 13

Опубликована: Июль 1, 2024

We addressed the multistage assembly flow shop problem with post-processing and makespan minimization, a production environment commonly encountered in diverse industries such as automotive, dental, medical equipment, clothing manufacturing. In this context, we presented an innovative mixed-integer linear programming model position-based strategy. Our proposed formulation demonstrated remarkable efficiency when compared to of literature. It achieved optimal solutions 77.16% instances, average optimality gap 10.59%. This study constitutes significant contribution efficient resolution practical frequently scheduling that has received relatively limited attention existing The findings highlight crucial role mathematical optimization models valuable decision-making tools for within system.

Язык: Английский

Процитировано

0

An Improved Constrained Multiobjective Optimization for Energy Multimodal Transport Among Clustering Islands DOI Creative Commons

Xu Yang,

Fuxing Zhang,

Honglei Miao

и другие.

Mathematics, Год журнала: 2024, Номер 12(24), С. 3926 - 3926

Опубликована: Дек. 13, 2024

Clustering islands located close to each other and sharing some common characteristics offer diverse unique opportunities for tourism, trade, research, especially take a crucial part in the military. Remote from inland, have relatively limited resources, which makes them dependent on imported energy sources such as oil gas or renewable energy. However, there are few studies about security of clustering islands. To this end, study proposes novel optimization framework that aims optimize use their different types among improve stability whole internet via multilayer transportation network. The network also enables serve emergency power situations. Specifically, we construct an assignment model considers multimodal transport, multiobjective, multiple constraints. address issue, develop unconstrained-individuals guiding constrained multiobjective algorithm, named uiCMOA. Experimental results demonstrate effectiveness efficiency proposed algorithm.

Язык: Английский

Процитировано

0