Adaptive Learning Modified Great Deluge Hyper-Heuristics DOI Creative Commons
Rizal Risnanda Hutama, Ahmad Muklason

International Journal of Computing, Год журнала: 2024, Номер unknown, С. 287 - 293

Опубликована: Июль 1, 2024

The International Timetabling Competition (ITC) 2021 focuses on sports scheduling, a domain intricately connected to optimizing combinatorics problems. Within the framework of ITC challenge, crucial task is precisely allocate matches their designated time slots. Addressing this challenge involves utilization Adaptive Learning Modified Great Deluge (ALMGD) algorithm, which belongs realm hyper-heuristics. This algorithm represents an evolutionary step from foundational great deluge incorporating acceptance mechanism woven with self-adaptive learning. To assess its efficacy, performance ALMGD scrutinized through comparative analysis hill climbing and algorithms. As result, proposed can produce solution that superior comparison algorithm. modified reduce penalty by 36%, while only 29% reaches 34%.

Язык: Английский

A Monte Carlo hyper-heuristic algorithm with low-level heuristics reward prediction for missile path planning DOI
Shuangfei Xu, Zhanjun Huang, Wenhao Bi

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(2)

Опубликована: Янв. 7, 2025

Язык: Английский

Процитировано

0

Integrated scheduling of material delivery and processing DOI

Jinlong Zheng,

Yixin Zhao, Jianfeng Li

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 110863 - 110863

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

View planning for visual detection coverage tasks of large airplane upper surface using UAVs DOI Creative Commons
Zheying Huang

Biomimetic Intelligence and Robotics, Год журнала: 2025, Номер unknown, С. 100228 - 100228

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Multi-armed bandit for the cyclic minimum sitting arrangement problem DOI
Marcos Robles, Sergio Cavero, Eduardo G. Pardo

и другие.

Computers & Operations Research, Год журнала: 2025, Номер unknown, С. 107034 - 107034

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Mathematical modeling and optimization of multi-period fourth-party logistics network design problems with customer satisfaction-sensitive demand DOI
Yuxin Zhang, Min Huang, Yaping Fu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127219 - 127219

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A structured review of large language models in metaheuristic optimisation DOI Creative Commons
Reza Ghanbarzadeh, Seyedali Mirjalili

Decision Analytics Journal, Год журнала: 2025, Номер unknown, С. 100587 - 100587

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Escaping Stagnation through Improved Orca Predator Algorithm with Deep Reinforcement Learning for Feature Selection DOI Creative Commons
Rodrigo Olivares, Camilo Ravelo, Ricardo Soto

и другие.

Mathematics, Год журнала: 2024, Номер 12(8), С. 1249 - 1249

Опубликована: Апрель 20, 2024

Stagnation at local optima represents a significant challenge in bio-inspired optimization algorithms, often leading to suboptimal solutions. This paper addresses this issue by proposing hybrid model that combines the Orca predator algorithm with deep Q-learning. The is an technique mimics hunting behavior of orcas. It solves complex problems exploring and exploiting search spaces efficiently. Deep Q-learning reinforcement learning neural networks. integration aims turn stagnation problem into opportunity for more focused effective exploitation, enhancing technique’s performance accuracy. proposed leverages biomimetic strengths identify promising regions nearby space, complemented fine-tuning capabilities navigate these areas precisely. practical application approach evaluated using high-dimensional Heartbeat Categorization Dataset, focusing on feature selection problem. dataset, comprising electrocardiogram signals, provided robust platform testing our model. Our experimental results are encouraging, showcasing strategy’s capability relevant features without significantly compromising metrics machine models. analysis was performed comparing improved method against its native version set state-of-the-art algorithms.

Язык: Английский

Процитировано

2

A Self-Learning Hyper-Heuristic Algorithm Based on a Genetic Algorithm: A Case Study on Prefabricated Modular Cabin Unit Logistics Scheduling in a Cruise Ship Manufacturer DOI Creative Commons
Jinghua Li,

Ruipu Dong,

Xiaoyuan Wu

и другие.

Biomimetics, Год журнала: 2024, Номер 9(9), С. 516 - 516

Опубликована: Авг. 27, 2024

Hyper-heuristic algorithms are known for their flexibility and efficiency, making them suitable solving engineering optimization problems with complex constraints. This paper introduces a self-learning hyper-heuristic algorithm based on genetic (GA-SLHH) designed to tackle the logistics scheduling problem of prefabricated modular cabin units (PMCUs) in cruise ships. can be regarded as multi-objective fuzzy collaborative problem. effectively avoid extensive evaluation repair infeasible solutions during iterative process, which is common issue meta-heuristic algorithms. The GA-SLHH employs combined strategy its high-level (HLS), optimizing low-level heuristics (LLHs) while uncovering potential relationships between adjacent decision-making stages. LLHs utilize classic rules solution support. Multiple sets numerical experiments demonstrate that exhibits stronger comprehensive ability stability when this Finally, validity addressing real-world issues ship manufacturing companies validated through practical enterprise cases. results case show scheme solved using proposed reduce transportation time by up 37%.

Язык: Английский

Процитировано

2

On reconfiguring heterogeneous parallel island models DOI
Lucas Ângelo Silveira, Thaynara Arielly de Lima, Maurício Ayala-Rincón

и другие.

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 89, С. 101624 - 101624

Опубликована: Июнь 5, 2024

Язык: Английский

Процитировано

1

A New Clustering-based View Planning Method for Building Inspection with Drone DOI
Yongshuai Zheng, Guoliang Liu, Yan Ding

и другие.

IEEE Robotics and Automation Letters, Год журнала: 2024, Номер 9(11), С. 9781 - 9788

Опубликована: Авг. 8, 2024

Язык: Английский

Процитировано

1