Journal of Open Innovation Technology Market and Complexity, Год журнала: 2025, Номер 11(2), С. 100545 - 100545
Опубликована: Май 2, 2025
Язык: Английский
Journal of Open Innovation Technology Market and Complexity, Год журнала: 2025, Номер 11(2), С. 100545 - 100545
Опубликована: Май 2, 2025
Язык: Английский
Zeitschrift für wirtschaftlichen Fabrikbetrieb, Год журнала: 2025, Номер 120(s1), С. 263 - 268
Опубликована: Март 20, 2025
Abstract In this study, AI-supported anomaly detection methods in the milling of inhomogeneous sample materials are investigated. To simplify data generation, targeted boreholes were introduced into homogeneous material samples. Process collected by means acceleration measurements on both workpiece and tool sides force side. Implementing feature extraction applying feature-based machine learning algorithms achieved precise classification reliable differentiation between drilled undrilled samples for process monitoring.
Язык: Английский
Процитировано
0Zeitschrift für wirtschaftlichen Fabrikbetrieb, Год журнала: 2025, Номер 120(s1), С. 208 - 213
Опубликована: Март 20, 2025
Abstract Based on recent Artificial Intelligence advancements, this paper addresses implementing an AI-based maintenance strategy within a controlled production environment. The architecture employs real-time machine monitoring. Data is first processed locally for early fault detection and later cloud-based to support predictive functions. A Large Language Model trained with domain-specific knowledge provides operators basic instructions manage repetitive faults. implemented tested as source of experimental data.
Язык: Английский
Процитировано
0Systems, Год журнала: 2025, Номер 13(4), С. 229 - 229
Опубликована: Март 27, 2025
Process mining facilitates the discovery, conformance, and enhancement of business processes using event logs. However, incomplete logs complexities concurrent activities present significant challenges in achieving accurate process models that fulfill completeness condition required mining. This paper introduces a Timed Genetic-Inductive Mining (TGIPM) algorithm, novel approach integrates strengths Genetic (TGPM) Inductive (IM). TGPM extends traditional (GPM) by incorporating time-based analysis, while IM is widely recognized for producing sound precise models. For first time, these two algorithms are combined into unified framework to address both missing activity recovery structural correctness discovery. study evaluates scenarios: sequential approach, which executed independently sequentially, TGIPM where integrated framework. Experimental results real-world from health service Indonesia demonstrate achieves higher fitness, precision, generalization compared slightly compromising simplicity. Moreover, algorithm exhibits lower computational cost more effectively captures parallelism, making it particularly suitable large datasets. research underscores potential enhance outcomes, offering robust efficient discovery driving innovation across industries.
Язык: Английский
Процитировано
0CIRP Annals, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal of Manufacturing Processes, Год журнала: 2025, Номер 142, С. 453 - 467
Опубликована: Апрель 5, 2025
Язык: Английский
Процитировано
0Procedia CIRP, Год журнала: 2025, Номер 133, С. 388 - 393
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Procedia CIRP, Год журнала: 2025, Номер 133, С. 20 - 25
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0CIRP Annals, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0CIRP Annals, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0CIRP Annals, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0