Опубликована: Июль 27, 2024
Язык: Английский
Опубликована: Июль 27, 2024
Язык: Английский
Clinics in Dermatology, Год журнала: 2024, Номер 42(3), С. 207 - 209
Опубликована: Янв. 4, 2024
Язык: Английский
Процитировано
5Pharmaceutical Research, Год журнала: 2024, Номер 41(4), С. 721 - 730
Опубликована: Март 5, 2024
Язык: Английский
Процитировано
5Ophthalmology Science, Год журнала: 2024, Номер 4(5), С. 100518 - 100518
Опубликована: Март 22, 2024
This study aimed to propose a fully automatic eyelid measurement system and compare the contours of both upper lower eyelids normal individuals according age gender.
Язык: Английский
Процитировано
4Cureus, Год журнала: 2025, Номер unknown
Опубликована: Март 27, 2025
Язык: Английский
Процитировано
0BioMedInformatics, Год журнала: 2024, Номер 4(1), С. 690 - 708
Опубликована: Март 1, 2024
Background: Facial surgeries require meticulous planning and outcome assessments, where facial analysis plays a critical role. This study introduces new approach by utilizing three-dimensional (3D) imaging techniques, which are known for their ability to measure areas volumes accurately. The purpose of this is introduce evaluate free web-based software application designed take area volume measurements on 3D models patient faces. Methods: employed the online conduct ten subjects, including five volume. These were then compared with those obtained from established modeling called Blender (version 3.2) using Bland–Altman plot. To ensure accuracy, intra-rater inter-rater reliabilities evaluated Intraclass Correlation Coefficient (ICC) method. Additionally, statistical assumptions such as normality homoscedasticity rigorously verified before analysis. Results: found that showed high agreement within 95% confidence limits. Moreover, demonstrated excellent reliability in most analyses, indicated ICC test. Conclusion: findings suggest reliable analysis, particularly measuring volumes. indicates its potential utility enhancing surgical evaluation surgeries. underscores software’s capability improve outcomes integrating precise into surgery assessment processes.
Язык: Английский
Процитировано
1Опубликована: Май 3, 2024
Язык: Английский
Процитировано
1Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
0Orbit, Год журнала: 2024, Номер unknown, С. 1 - 9
Опубликована: Окт. 22, 2024
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2024, Номер 76(6), С. 1569 - 1583
Опубликована: Окт. 25, 2024
Early and accurate diagnosis of plant diseases in agriculture is crucial to increase productivity, reduce the use chemicals, save costs obtain high quality products. Conventional methods are time consuming prone human error detecting diseased areas. Therefore, automatic detection regions images obtained from imaging devices becoming increasingly important modern agriculture. In this study, a novel deep learning-based model called Plant Diseased Region Detection Segmentation Network (PDRDSegNet) proposed solve problem segmenting leaves. PDRDSegNet was developed as semantic segmentation specifically optimized for disease detection. The performance compared with common models such UNet, SegNet, FCN8, DeepLabV3+, ENet, PSPNet ICNet. training testing other were performed using "Leaf Disease Dataset," which widely used results show that achieved highest score an mIoU accuracy 86.05%. addition, found achieve higher rates fewer parameters, optimizing computational costs. These indicate can be effective tool
Язык: Английский
Процитировано
0Опубликована: Июль 27, 2024
Язык: Английский
Процитировано
0