Multi-objective analysis and optimization of energy aspects during dry and MQL turning of unreinforced polypropylene (PP): an approach based on ANOVA, ANN, MOWCA, and MOALO DOI
Amine Hamdi, Yusuf Furkan Yapan, Alper Uysal

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2023, Номер 128(11-12), С. 4933 - 4950

Опубликована: Сен. 4, 2023

Язык: Английский

Multi-objective equilibrium optimizer slime mould algorithm and its application in solving engineering problems DOI
Qifang Luo, Shihong Yin, Guo Zhou

и другие.

Structural and Multidisciplinary Optimization, Год журнала: 2023, Номер 66(5)

Опубликована: Апрель 24, 2023

Язык: Английский

Процитировано

26

Interval forecasting for wind speed using a combination model based on multiobjective artificial hummingbird algorithm DOI

Peiqi Sun,

Zhenkun Liu, Jianzhou Wang

и другие.

Applied Soft Computing, Год журнала: 2023, Номер 150, С. 111090 - 111090

Опубликована: Ноя. 23, 2023

Язык: Английский

Процитировано

24

LCAHA: A hybrid artificial hummingbird algorithm with multi-strategy for engineering applications DOI
Gang Hu, Jingyu Zhong,

Congyao Zhao

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 415, С. 116238 - 116238

Опубликована: Июль 23, 2023

Язык: Английский

Процитировано

23

Multi-objective generalized normal distribution optimization: a novel algorithm for multi-objective problems DOI Creative Commons
Nima Khodadadi, Ehsan Khodadadi, Benyamın Abdollahzadeh

и другие.

Cluster Computing, Год журнала: 2024, Номер 27(8), С. 10589 - 10631

Опубликована: Май 8, 2024

Abstract This study introduces the Multi-objective Generalized Normal Distribution Optimization (MOGNDO) algorithm, an advancement of (GNDO) now adapted for multi-objective optimization tasks. The GNDO previously known its effectiveness in single-objective optimization, has been enhanced with two key features optimization. first is addition archival mechanism to store non-dominated Pareto optimal solutions, ensuring a detailed record best outcomes. second enhancement new leader selection mechanism, designed strategically identify and select solutions from archive guide process. positions MOGNDO as cutting-edge solution setting benchmark evaluating performance against leading algorithms field. algorithm's rigorously tested across 35 varied case studies, encompassing both mathematical engineering challenges, benchmarked prominent like MOPSO, MOGWO, MOHHO, MSSA, MOALO, MOMVO, MOAOS. Utilizing metrics such Generational Distance (GD), Inverted (IGD), Maximum Spread (MS), underscores MOGNDO's ability produce fronts high quality, marked by exceptional precision diversity. results affirm superior versatility, not only theoretical tests but also addressing complex real-world problems, showcasing convergence coverage capabilities. source codes algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes .

Язык: Английский

Процитировано

12

Optimal planning of electric-heating integrated energy system in low-carbon park with energy storage system DOI

Yuanweiji Hu,

Bo Yang,

Pengyu Wu

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 99, С. 113327 - 113327

Опубликована: Авг. 18, 2024

Язык: Английский

Процитировано

11

A hyper-heuristic algorithm via proximal policy optimization for multi-objective truss problems DOI
Shihong Yin, Zhengrong Xiang

Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124929 - 124929

Опубликована: Июль 30, 2024

Язык: Английский

Процитировано

10

Artificial hummingbird algorithm: Theory, variants, analysis, applications, and performance evaluation DOI
Buddhadev Sasmal, Arunita Das, Krishna Gopal Dhal

и другие.

Computer Science Review, Год журнала: 2025, Номер 56, С. 100727 - 100727

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

Enhanced Aquila optimizer algorithm for global optimization and constrained engineering problems DOI Creative Commons

YU Huang-jing,

Heming Jia,

Jianping Zhou

и другие.

Mathematical Biosciences & Engineering, Год журнала: 2022, Номер 19(12), С. 14173 - 14211

Опубликована: Янв. 1, 2022

<abstract><p>The Aquila optimizer (AO) is a recently developed swarm algorithm that simulates the hunting behavior of birds. In complex optimization problems, an AO may have slow convergence or fall in sub-optimal regions, especially high ones. This paper tries to overcome these problems by using three different strategies: restart strategy, opposition-based learning and chaotic local search. The named as mAO was tested 29 CEC 2017 functions five engineering constrained problems. results prove superiority efficiency solving many issues.</p></abstract>

Язык: Английский

Процитировано

34

MNEARO: A meta swarm intelligence optimization algorithm for engineering applications DOI
Gang Hu, Feiyang Huang, Kang Chen

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 419, С. 116664 - 116664

Опубликована: Дек. 7, 2023

Язык: Английский

Процитировано

20

IYDSE: Ameliorated Young’s double-slit experiment optimizer for applied mechanics and engineering DOI
Gang Hu,

Yuxuan Guo,

Jingyu Zhong

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 412, С. 116062 - 116062

Опубликована: Май 4, 2023

Язык: Английский

Процитировано

18