The International Journal of Advanced Manufacturing Technology, Год журнала: 2023, Номер 128(11-12), С. 4933 - 4950
Опубликована: Сен. 4, 2023
Язык: Английский
The International Journal of Advanced Manufacturing Technology, Год журнала: 2023, Номер 128(11-12), С. 4933 - 4950
Опубликована: Сен. 4, 2023
Язык: Английский
Structural and Multidisciplinary Optimization, Год журнала: 2023, Номер 66(5)
Опубликована: Апрель 24, 2023
Язык: Английский
Процитировано
26Applied Soft Computing, Год журнала: 2023, Номер 150, С. 111090 - 111090
Опубликована: Ноя. 23, 2023
Язык: Английский
Процитировано
24Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 415, С. 116238 - 116238
Опубликована: Июль 23, 2023
Язык: Английский
Процитировано
23Cluster Computing, Год журнала: 2024, Номер 27(8), С. 10589 - 10631
Опубликована: Май 8, 2024
Abstract This study introduces the Multi-objective Generalized Normal Distribution Optimization (MOGNDO) algorithm, an advancement of (GNDO) now adapted for multi-objective optimization tasks. The GNDO previously known its effectiveness in single-objective optimization, has been enhanced with two key features optimization. first is addition archival mechanism to store non-dominated Pareto optimal solutions, ensuring a detailed record best outcomes. second enhancement new leader selection mechanism, designed strategically identify and select solutions from archive guide process. positions MOGNDO as cutting-edge solution setting benchmark evaluating performance against leading algorithms field. algorithm's rigorously tested across 35 varied case studies, encompassing both mathematical engineering challenges, benchmarked prominent like MOPSO, MOGWO, MOHHO, MSSA, MOALO, MOMVO, MOAOS. Utilizing metrics such Generational Distance (GD), Inverted (IGD), Maximum Spread (MS), underscores MOGNDO's ability produce fronts high quality, marked by exceptional precision diversity. results affirm superior versatility, not only theoretical tests but also addressing complex real-world problems, showcasing convergence coverage capabilities. source codes algorithm are publicly available at https://nimakhodadadi.com/algorithms-%2B-codes .
Язык: Английский
Процитировано
12Journal of Energy Storage, Год журнала: 2024, Номер 99, С. 113327 - 113327
Опубликована: Авг. 18, 2024
Язык: Английский
Процитировано
11Expert Systems with Applications, Год журнала: 2024, Номер 256, С. 124929 - 124929
Опубликована: Июль 30, 2024
Язык: Английский
Процитировано
10Computer Science Review, Год журнала: 2025, Номер 56, С. 100727 - 100727
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
1Mathematical Biosciences & Engineering, Год журнала: 2022, Номер 19(12), С. 14173 - 14211
Опубликована: Янв. 1, 2022
<abstract><p>The Aquila optimizer (AO) is a recently developed swarm algorithm that simulates the hunting behavior of birds. In complex optimization problems, an AO may have slow convergence or fall in sub-optimal regions, especially high ones. This paper tries to overcome these problems by using three different strategies: restart strategy, opposition-based learning and chaotic local search. The named as mAO was tested 29 CEC 2017 functions five engineering constrained problems. results prove superiority efficiency solving many issues.</p></abstract>
Язык: Английский
Процитировано
34Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 419, С. 116664 - 116664
Опубликована: Дек. 7, 2023
Язык: Английский
Процитировано
20Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 412, С. 116062 - 116062
Опубликована: Май 4, 2023
Язык: Английский
Процитировано
18