Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 431, С. 117247 - 117247
Опубликована: Июль 29, 2024
Язык: Английский
Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 431, С. 117247 - 117247
Опубликована: Июль 29, 2024
Язык: Английский
Concurrency and Computation Practice and Experience, Год журнала: 2025, Номер 37(3)
Опубликована: Янв. 20, 2025
ABSTRACT The differential evolution algorithm, as a simple yet effective random search often faces challenges in terms of rapid convergence and sharp decline population diversity during the evolutionary process. To address this issue, an improved namely multi‐population collaboration (MPC‐DE) is introduced article. algorithm proposes mechanism two‐stage mutation operator. Through mechanism, individuals involved effectively controlled, enhancing algorithm's global capability. operator efficiently balances requirements exploration exploitation stages. Additionally, perturbation to enhance ability escape local optima improve stability. By conducting comprehensive comparisons with 15 well‐known optimization algorithms on CEC2005 CEC2017 test functions, MPC‐DE thoroughly evaluated solution accuracy, convergence, stability, scalability. Furthermore, validation 57 real‐world engineering problems CEC2020 demonstrates robustness MPC‐DE. Experimental results reveal that, compared other algorithms, exhibits superior accuracy both constrained unconstrained problems. These research findings provide strong support for widespread applicability addressing practical
Язык: Английский
Процитировано
0Earth Science Informatics, Год журнала: 2025, Номер 18(3)
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
0Computer Methods in Applied Mechanics and Engineering, Год журнала: 2025, Номер 440, С. 117908 - 117908
Опубликована: Март 19, 2025
Язык: Английский
Процитировано
0International Journal of Cognitive Computing in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal Of Big Data, Год журнала: 2025, Номер 12(1)
Опубликована: Май 9, 2025
Язык: Английский
Процитировано
0Biomimetics, Год журнала: 2025, Номер 10(5), С. 302 - 302
Опубликована: Май 9, 2025
In this study, a brand-new algorithm called the Comprehensive Adaptive Enterprise Development Optimizer (CAED) is proposed to overcome drawbacks of (ED) in complex optimization tasks. particular, it aims tackle problems slow convergence and low precision. To enhance algorithm’s ability break free from local optima, lens imaging reverse learning approach incorporated. This creates solutions by utilizing concepts optical imaging. As result, expands search range boosts probability finding superior beyond optima. Moreover, an environmental sensitivity-driven adaptive inertial weight developed. dynamically modifies equilibrium between global exploration, which enables for new promising areas solution space, development, centered on refining close currently best-found areas. evaluate efficacy CAED, 23 benchmark functions CEC2005 are chosen testing. The performance CAED contrasted with that nine other algorithms, such as Particle Swarm Optimization (PSO), Gray Wolf (GWO), Antlion (AOA). Experimental findings show unimodal functions, standard deviation almost 0, reflects its high accuracy stability. case multimodal optimal value obtained notably better than those further emphasizing outstanding performance. also applied engineering challenges, like design cantilever beams three-bar trusses. For beam problem, achieved 13.3925, merely 0.0098. truss 259.805047, extremely small 1.11 × 10−7. These results much traditional ED comparative algorithms. Overall, through coordinated implementation multiple strategies, exhibits precision, strong robustness, rapid when searching spaces. such, offers efficient solving various problems.
Язык: Английский
Процитировано
0Engineering Optimization, Год журнала: 2024, Номер unknown, С. 1 - 39
Опубликована: Июль 24, 2024
Metaheuristic algorithms play a crucial role in engineering optimization, as they can find the optimal parameter configuration systems. This article proposes multi-strategy improved seagull optimization algorithm (OPSOA) to solve application problems. Aiming problems of slow search speed and low convergence accuracy standard (SOA), four strategies, including Lévy flight Cauchy mutation, were introduced improve its performance. Comparison shows that OPSOA incomplete are better than SOA, indicating each improvement is effective. By testing benchmark functions CEC 2017 2022, it shown has strong ability solution superior other terms speed. The this practical proves significant advantages solving complex
Язык: Английский
Процитировано
3Swarm and Evolutionary Computation, Год журнала: 2024, Номер 91, С. 101766 - 101766
Опубликована: Окт. 31, 2024
Язык: Английский
Процитировано
3Advances in Engineering Software, Год журнала: 2024, Номер 198, С. 103793 - 103793
Опубликована: Окт. 22, 2024
Язык: Английский
Процитировано
2Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 431, С. 117251 - 117251
Опубликована: Авг. 16, 2024
Язык: Английский
Процитировано
1