A comparison of micromorphic gradient‐extensions for anisotropic damage DOI Creative Commons
Tim van der Velden, Tim Brepols, Stefanie Reese

и другие.

PAMM, Год журнала: 2024, Номер unknown

Опубликована: Сен. 20, 2024

Abstract The modeling of inelastic phenomena with tensor‐valued internal variables requires a regularization to counteract mesh dependence. Here, we consider the anisotropic damage at finite strains and seek for an efficient formulation based on reduced number nonlocal degrees freedom. We, thus, equip brittle version model different gradient‐extensions in micromorphic framework using full tensor. models are compared structural simulation asymmetrically notched specimen perforated shear band section. High agreement is observed between two Furthermore, present novel study evolution field variables.

Язык: Английский

An anisotropic thermo-mechanically coupled constitutive model for glass fiber reinforced polyamide 6 including crystallization kinetics DOI Creative Commons
Marie-Christine Reuvers,

Christopher Dannenberg,

S. K. Kulkarni

и другие.

International Journal of Plasticity, Год журнала: 2025, Номер unknown, С. 104341 - 104341

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Prediction using inelastic constitutive artificial neural networks for impact of dead-time on inverters in wireless power transfer systems DOI

Mr. Franklin J,

P. K.

e-Prime - Advances in Electrical Engineering Electronics and Energy, Год журнала: 2025, Номер 12, С. 100993 - 100993

Опубликована: Апрель 22, 2025

Язык: Английский

Процитировано

0

An anisotropic, brittle damage model for finite strains with a generic damage tensor regularization DOI
Tim van der Velden, Stefanie Reese, Hagen Holthusen

и другие.

International Journal of Damage Mechanics, Год журнала: 2025, Номер unknown

Опубликована: Май 14, 2025

This paper establishes a generic framework for the nonlocal modeling of anisotropic damage at finite strains. By combination two recent works, new allows flexible incorporation different established hyperelastic strain material formulations into whilst ensuring mesh-independent results by employing set micromorphic gradient-extensions. First, model, generally satisfying growth criterion, is investigated specific choice neo-Hookean on single element. Next, model applied with gradient-extensions in structural simulations an asymmetrically notched specimen to identify efficient form volumetric–deviatoric regularization. Thereafter, framework, which without loss generality here specified gradient-extension, successfully serves complex simulation pressure-loaded rotor blade. The codes subroutines are accessible public https://doi.org/10.5281/zenodo.11171630 .

Язык: Английский

Процитировано

0

Biaxial testing and sensory texture evaluation of plant-based and animal deli meat DOI Creative Commons
Skyler R. St. Pierre,

Lauren Somersille Sibley,

S. T. Tran

и другие.

Current Research in Food Science, Год журнала: 2025, Номер unknown, С. 101080 - 101080

Опубликована: Июнь 1, 2025

Язык: Английский

Процитировано

0

A comparative study of micromorphic gradient‐extensions for anisotropic damage at finite strains DOI Creative Commons
Tim van der Velden, Tim Brepols, Stefanie Reese

и другие.

International Journal for Numerical Methods in Engineering, Год журнала: 2024, Номер 125(24)

Опубликована: Авг. 11, 2024

Abstract Modern inelastic material model formulations rely on the use of tensor‐valued internal variables. When phenomena include softening, simulations former are prone to localization. Thus, an accurate regularization variables is essential obtain physically correct results. Here, we focus anisotropic damage at finite strains. a flexible with isotropic, kinematic, and distortional hardening equipped three gradient‐extensions using full two reduced regularizations tensor. Theoretical numerical comparisons yield excellent agreement between based volumetric‐deviatoric only nonlocal degrees freedom.

Язык: Английский

Процитировано

3

Data-driven continuum damage mechanics with built-in physics DOI
Vahidullah Taç, Ellen Kuhl, Adrián Buganza Tepole

и другие.

Extreme Mechanics Letters, Год журнала: 2024, Номер 71, С. 102220 - 102220

Опубликована: Авг. 10, 2024

Язык: Английский

Процитировано

2

Polyconvex inelastic constitutive artificial neural networks DOI Creative Commons
Hagen Holthusen, Lukas Lamm, Tim Brepols

и другие.

PAMM, Год журнала: 2024, Номер unknown

Опубликована: Сен. 18, 2024

Abstract The characterization of the material behavior inelastic materials requires a high degree expert knowledge to identify and constitutively describe response. In addition, specific models are usually pre‐selected in course only best parameters for these determined, but therefore not necessarily models. Unfortunately, more general description results an increased effort during characterization, which is barely practicable by hand. This where machine learning algorithms may help us. To get both worlds, powerful sound thermodynamic considerations, Constitutive Artificial Neural Networks (iCANNs) discover generic formulations Helmholtz free energy pseudo potential. relations guide us towards thermodynamically consistent descriptions stresses strains; concept that applicable wide range phenomena from viscoelasticity, elastoplasticity, phase transformations growth remodeling living tissues. Here, we equip original iCANN framework guarantee polyconvexity priori, ensures at least one minimizing deformation. We investigate ability our viscoelastic polymer different stretch levels strain rates. made source code, data, example accessible public https://doi.org/10.5281/zenodo.11084354 .

Язык: Английский

Процитировано

2

Data-driven homogenisation of viscoelastic porous elastomers: feedforward versus knowledge-based neural networks DOI Creative Commons
Mirac Onur Bozkurt, Vito L. Tagarielli

International Journal of Mechanical Sciences, Год журнала: 2024, Номер 286, С. 109824 - 109824

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

2

A comparative study of constitutive models for EPS foam under combined compression and shear impact loading for helmet applications DOI Creative Commons
Marcus Arnesen, Stefan Hallström, Peter Halldin

и другие.

Results in Engineering, Год журнала: 2024, Номер 23, С. 102685 - 102685

Опубликована: Авг. 8, 2024

Virtual testing of helmets using finite element (FE) analysis can be a valuable tool during product development. Still, its usefulness is limited by the quality constitutive model energy-absorbing material, usually foam. Built-in models in commercial FE software are developed for traditional linear compression loading. However, modern oblique test methods load foam combined and shear. Therefore, we aim to evaluate what extent built-in represent Expanded Polystyrene (EPS) shear loading (CCSL). EPS tested experimentally newly rig CCSL (V-test). The response compared against simulation three different available LS-DYNA (M83, M126, M181). assessed their ability capture correct response, focusing on how well continuum phenomenological events seen experiments. results show that perform compression, as expected. point out limitations significant unloading both important helmet testing. Due these limitations, conclude existing inadequate accurately simulating impacts. There clear need develop implement new focused capturing including unloading. Additionally, frictional sliding was found substantially influence measured V-test method. Minimizing interface therefore critical isolating material behavior.

Язык: Английский

Процитировано

1

An efficient kernel learning-based constitutive model for cyclic plasticity in nonlinear finite element analysis DOI

Yue Liao,

Huan Luo

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2024, Номер 436, С. 117700 - 117700

Опубликована: Дек. 28, 2024

Язык: Английский

Процитировано

1