Procedia Computer Science, Год журнала: 2025, Номер 260, С. 118 - 125
Опубликована: Янв. 1, 2025
Язык: Английский
Procedia Computer Science, Год журнала: 2025, Номер 260, С. 118 - 125
Опубликована: Янв. 1, 2025
Язык: Английский
Frontiers in Immunology, Год журнала: 2025, Номер 16
Опубликована: Март 17, 2025
Investigating the effect of M2 macrophage infiltration on overall survival and to use histopathological imaging features (HIF) predict in patients with serous ovarian cancer (SOC) is important for improving prognostic accuracy, identifying new therapeutic targets, advancing personalized treatment approaches. We downloaded data from 86 SOC The Cancer Genome Atlas (TCGA) divided these into a training set validation ratio 8:2. In addition, tissue microarrays 106 were included as an external set. HIF recognized by deep multiple instance learning (MIL) via theResNet18 network final model was evaluated using internal Using acquired TCGA database, we applied univariate Cox analysis determined that higher levels associated poor prognosis (hazard [HR]=6.8; 95% CI [confidence interval]: 1.6-28, P=0.0083). External revealed independent risk factor (HR=3.986; CI: 2.436-6.522; P<0.001). Next, constructed four MIL strategies (Mean probability, Top-10 Mean, Top-100 Maximum probability) identify images could infiltration. Mean Probability Method most suitable used generate AUC, recall rate, precision F1 score 0.7500, 0.6932, 0.600, respectively. Collectively, our findings indicated may increase prediction patients. Machine pathological immunohistochemical exhibited good potential direct
Язык: Английский
Процитировано
0Diagnostics, Год журнала: 2025, Номер 15(7), С. 805 - 805
Опубликована: Март 21, 2025
Background/Objectives: Lung cancer is a leading cause of cancer-related mortalities, with early diagnosis crucial for survival. While biopsy the gold standard, manual histopathological analysis time-consuming. This research enhances lung through deep learning-based feature extraction, fusion, optimization, and classification improved accuracy efficiency. Methods: The study begins image preprocessing using an adaptive fuzzy filter, followed by segmentation modified simple linear iterative clustering (SLIC) algorithm. segmented images are input into learning architectures, specifically ResNet-50 (RN-50), ResNet-101 (RN-101), ResNet-152 (RN-152), extraction. extracted features fused deep-weighted averaging-based fusion (DWAFF) technique, producing ResNet-X (RN-X)-fused features. To further refine these features, particle swarm optimization (PSO) red deer (RDO) techniques employed within selective pooling layer. optimized classified various machine classifiers, including support vector (SVM), decision tree (DT), random forest (RF), K-nearest neighbor (KNN), SoftMax discriminant classifier (SDC), Bayesian (BLDC), multilayer perceptron (MLP). A performance evaluation performed K-fold cross-validation K values 2, 4, 5, 8, 10. Results: proposed DWAFF combined selection RDO MLP, achieved highest 98.68% when = 10 cross-validation. RN-X demonstrated superior compared to individual ResNet variants, integration significantly enhanced accuracy. Conclusions: methodology automates learning, advanced techniques. Segmentation enhance performance, improving diagnostic Future work may explore optimizations hybrid models.
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 153, С. 110961 - 110961
Опубликована: Апрель 29, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 108, С. 107958 - 107958
Опубликована: Апрель 30, 2025
Язык: Английский
Процитировано
0Procedia Computer Science, Год журнала: 2025, Номер 260, С. 118 - 125
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0