A systematic evaluation of advanced machine learning models for nickel contamination management in soil using spectral data DOI Creative Commons

Kechao Li,

Tao Hu, Min Zhou

и другие.

Journal of Hazardous Materials Advances, Год журнала: 2024, Номер unknown, С. 100576 - 100576

Опубликована: Дек. 1, 2024

Язык: Английский

Tree-structured parzen estimator optimized-automated machine learning assisted by meta–analysis for predicting biochar–driven N2O mitigation effect in constructed wetlands DOI

Bi–Ni Jiang,

Yingying Zhang, Zhiyong Zhang

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 354, С. 120335 - 120335

Опубликована: Фев. 17, 2024

Язык: Английский

Процитировано

13

Utilizing machine learning to evaluate heavy metal pollution in the world's largest mangrove forest DOI
Ram Proshad, Md. Abdur Rahim, Mahfuzur Rahman

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175746 - 175746

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

6

Fracture toughness prediction using well logs and Extreme gradient Boosting based on particle swarm optimization in shale gas reservoir DOI

Mbula Ngoy Nadege,

Biao Shu,

Allou Koffi Franck Kouassi

и другие.

Engineering Fracture Mechanics, Год журнала: 2024, Номер 315, С. 110759 - 110759

Опубликована: Дек. 28, 2024

Язык: Английский

Процитировано

4

Vertical distributions and potential contamination assessment of seldom monitored trace elements in three different land use types of Yellow River Delta DOI
Yingqiang Song,

Zhongkang Yang

Marine Pollution Bulletin, Год журнала: 2024, Номер 199, С. 116033 - 116033

Опубликована: Янв. 13, 2024

Язык: Английский

Процитировано

3

Retrieval of chromium and mercury concentrations in agricultural soils: Using spectral information, environmental covariates, or a fusion of both? DOI Creative Commons
Li Wang, Zhou Yong, Sun Xiao

и другие.

Ecological Indicators, Год журнала: 2024, Номер 167, С. 112594 - 112594

Опубликована: Сен. 14, 2024

Язык: Английский

Процитировано

3

Soil zinc content estimation using GF-5 hyperspectral image with mitigation of soil moisture influence DOI

Songtao Ding,

Weihao Wang, Weichao Sun

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110318 - 110318

Опубликована: Март 30, 2025

Язык: Английский

Процитировано

0

Improving spatial prediction of soil organic matter in typical black soil area of Northeast China using structural equation modeling integration framework DOI
Xingnan Liu, Mingchang Wang, Ziwei Liu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 236, С. 110404 - 110404

Опубликована: Апрель 24, 2025

Язык: Английский

Процитировано

0

High-performance prediction of soil organic carbon using automatic hyperparameter optimization method in the yellow river delta of China DOI
Yingqiang Song,

Feng Wang,

Weihao Yang

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 236, С. 110490 - 110490

Опубликована: Май 8, 2025

Язык: Английский

Процитировано

0

A WebGIS-Based System for Supporting Saline–Alkali Soil Ecological Monitoring: A Case Study in Yellow River Delta, China DOI Creative Commons
Yingqiang Song,

Yinxue Pan,

Meiyan Xiang

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(11), С. 1948 - 1948

Опубликована: Май 28, 2024

Monitoring and evaluation of soil ecological environments are very important to ensure saline–alkali health the safety agricultural products. It is foremost importance to, within a regional risk-reduction strategy, develop useful online system for assessment prediction prevent people from suffering threat sudden disasters. However, traditional manual or empirical parameter adjustment causes mismatch hyperparameters model, which cannot meet urgent need high-performance properties using multi-dimensional data in WebGIS system. To this end, study aims monitoring real-time ecology Yellow River Delta, China. The applied advanced web-based GIS, including front-end back-end technology stack, cross-platform deployment machine learning models, database embedded multi-source environmental variables. adopts five-layer architecture integrates functions such as statistical analysis, assessment, salt prediction, management. visually displays results air quality, vegetation index, area. provides users with risk analyze heavy metal pollution soil. Specially, introduces tree-structured Parzan estimator (TPE)-optimized model achieve accurate salinity. TPE–RF had highest accuracy (R2 = 94.48%) testing set comparison TPE–GBDT exhibited strong nonlinear relationship between variables developed can provide information government agencies farmers, great significance production protection.

Язык: Английский

Процитировано

2

Hybrid machine learning approach integrating GMDH and SVR for heavy metal concentration prediction in dust samples DOI
Jamshid Piri, Mohammad Reza Rezaei Kahkha, Özgür Kişi

и другие.

Environmental Science and Pollution Research, Год журнала: 2024, Номер unknown

Опубликована: Сен. 10, 2024

Язык: Английский

Процитировано

2