Research on the Inversion of Key Growth Parameters of Rice Based on Multisource Remote Sensing Data and Deep Learning DOI Creative Commons
Jian Li, Jian Lü,

Hongkun Fu

и другие.

Agriculture, Год журнала: 2024, Номер 14(12), С. 2326 - 2326

Опубликована: Дек. 19, 2024

This study accurately inverts key growth parameters of rice, including Leaf Area Index (LAI), chlorophyll content (SPAD) value, and height, by integrating multisource remote sensing data (including MODIS ERA5 imagery) deep learning models. Dehui City in Jilin Province, China, was selected as the case area, where multidimensional vegetation indices, ecological function parameters, environmental variables were collected, covering seven stages rice. Data analysis parameter prediction conducted using a variety machine models Partial Least Squares (PLSs), Support Vector Machine (SVM), Random Forest (RF), Long Short-Term Memory Networks (LSTM), among which LSTM model demonstrated superior performance, particularly at multiple critical time points. The results show that performed best inverting three with LAI inversion accuracy on 21 August reaching coefficient determination (R2) 0.72, root mean square error (RMSE) 0.34, absolute (MAE) 0.27. SPAD same date achieved an R2 0.69, RMSE 1.45, MAE 1.16. height 25 July reached 0.74, 2.30, 2.08. not only verifies effectiveness combining advanced algorithms but also provides scientific basis for precision management decision-making rice cultivation.

Язык: Английский

A model suitable for estimating above-ground biomass of potatoes at different regional levels DOI
Yang Liu,

Yiguang Fan,

Jibo Yue

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 222, С. 109081 - 109081

Опубликована: Май 23, 2024

Язык: Английский

Процитировано

31

Crop water stress detection based on UAV remote sensing systems DOI Creative Commons
Hao Dong, Jiahui Dong,

Shikun Sun

и другие.

Agricultural Water Management, Год журнала: 2024, Номер 303, С. 109059 - 109059

Опубликована: Сен. 13, 2024

Язык: Английский

Процитировано

15

Based on historical weather data to predict summer field-scale maize yield: Assimilation of remote sensing data to WOFOST model by ensemble Kalman filter algorithm DOI

Shixiong Ren,

Hao Chen,

Jian Hou

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 219, С. 108822 - 108822

Опубликована: Март 16, 2024

Язык: Английский

Процитировано

13

A proposed plant classification framework for smart agricultural applications using UAV images and artificial intelligence techniques DOI Creative Commons

Shymaa G. Eladl,

Amira Y. Haikal,

Mahmoud M. Saafan

и другие.

Alexandria Engineering Journal, Год журнала: 2024, Номер 109, С. 466 - 481

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

6

Application of a centrifugal disc fertilizer spreading system for UAVs in rice fields DOI Creative Commons
Hongyang Zhou, Weixiang Yao,

Dongxu Su

и другие.

Heliyon, Год журнала: 2024, Номер 10(8), С. e29837 - e29837

Опубликована: Апрель 1, 2024

Unmanned aerial vehicle (UAV) granular fertilizer spreading technology has been gradually applied in agricultural production. However, the process of operation, actual influence effect each factor field operation is still unclear. Based on self-developed UAV system, this paper explores effects three factors, baffle retraction (B), disc speed (D), and flight altitude (H), scenarios through orthogonal test taking coefficient variation (Cv) relative error application rate (λ) as evaluation indexes. The results showed that optimal level combination Cv was 11.23 % for BbDbHa (the 6 %, 600r/min, height 1.5 m) at 2 m/s. best λ BbDbHb 7.99 m). In addition, by analysing weather vortex rice canopy effect, it found less while caused airflow rotor a certain which also relatively easy to ignore operations. study can be used explore operational UAVs field, will help promote development provide reference precision aviation.

Язык: Английский

Процитировано

5

Integrating UAV and satellite LAI data into a modified DSSAT-rapeseed model to improve yield predictions DOI

Chufeng Wang,

Lin Ling,

Jie Kuai

и другие.

Field Crops Research, Год журнала: 2025, Номер 327, С. 109883 - 109883

Опубликована: Апрель 5, 2025

Язык: Английский

Процитировано

0

A Comprehensive Review of Deep Learning Approaches for Rice Disease Detection: Datasets, Methodologies, and Future Directions DOI Creative Commons
Usman Ismail,

Chua Hui Na,

Ir. Rosdiadee Nordin

и другие.

Smart Agricultural Technology, Год журнала: 2025, Номер unknown, С. 100976 - 100976

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Comparative Analysis of RGB and Multispectral UAV Image Data for Leaf Area Index Estimation of Sweet Potato DOI Creative Commons

Shoki Ochiai,

Erika Kamada,

Ryo Sugiura

и другие.

Smart Agricultural Technology, Год журнала: 2024, Номер unknown, С. 100579 - 100579

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

2

Water-Saving Irrigation and N Reduction Increased the Rice Harvest Index, Enhanced Yield and Resource Use Efficiency in Northeast China DOI Creative Commons

Sicheng Du,

Zhongxue Zhang,

Jian Song

и другие.

Agronomy, Год журнала: 2024, Номер 14(6), С. 1324 - 1324

Опубликована: Июнь 19, 2024

For agricultural production, improving the rice harvest index (HI) through management practices is a major means to enhance water and N utilization efficiency yield. Both irrigation regimes nitrogen (N) rates are important aspects of practices. However, it unclear how HI affected by N. This study aimed clarify mechanism underlying response N, explore most suitable water-saving reduction ensure A two-year (2021~2022) field experiment was conducted on Mollisols in Northeast China. In this experiment, nine treatments were performed, involving three (flooded irrigation, controlled “thin-shallow-wet-dry” irrigation) (110, 99, 88 kg/ha). The agronomic traits transfer photoassimilates under different observed studied; HI, WUE, NUE calculated analyzed. highest achieved with 99 kg/ha rate, at values 0.622 0.621 2021 2022, respectively. Controlled (CI) an appropriate rate increased proportion productive tillers, dry matter non-structural carbohydrates (NSCs), sugar–spikelet ratio, grain–leaf leaf area (LAI) during heading–flowering stage. subsequent analysis indicated that main reason for increase ratio high yield increasing thousand-grain weight. present suggested not only led fertilizer resource savings but also improved characteristics growth enhanced transport capacity. Thus, these have enormous potential Therefore, regulating methods should be considered strategy

Язык: Английский

Процитировано

1

Diagnostic study of nitrogen nutrition in cotton based on unmanned aerial vehicle RGB images DOI Creative Commons
Lu Wang,

Qiushuang Yao,

Ze Zhang

и другие.

Notulae Botanicae Horti Agrobotanici Cluj-Napoca, Год журнала: 2024, Номер 52(2), С. 13728 - 13728

Опубликована: Май 21, 2024

Nitrogen fertilizer levels significantly affect crop growth and development, necessitating precision management. Most studies focus on nitrogen nutrient estimation using vegetation indices textural features, overlooking the diagnostic potential of color features. Hence, we investigated cotton nutrition status unmanned aerial vehicle (UAV) image features index (NNI). Random frog algorithm - random forest-screened feature sets correlated with NNI, which were substituted into four machine learning algorithms for NNI modeling. The composite scores (F) optimal calculated coefficient variation method comprehensive diagnosis. Validation model determining critical concentration in yielded a determination R2 = 0.89, root mean square error RMSE 0.50 g (100 g)-1, absolute MAE 0.44, demonstrating improved performance. Additionally, our novel constructed based exhibited R2c 0.97, RMSEc 0.02, MAEc R2v 0.85, RMSEv 0.05, MAEv 0.04. Polynomial fitting indicated that was reliable following criterion: 0.48 < F2 0.67 overapplication, whereas or > deficiency. This study demonstrates superior effectiveness UAV RGB quick, accurate diagnosis levels, will help guide application.

Язык: Английский

Процитировано

1