Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 218 - 229
Опубликована: Ноя. 15, 2024
Язык: Английский
Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 218 - 229
Опубликована: Ноя. 15, 2024
Язык: Английский
Frontiers in Plant Science, Год журнала: 2024, Номер 15
Опубликована: Окт. 24, 2024
Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in yield quality caused by these problems. In recent years, remote sensing (RS) areas has been prevailed over unmanned aerial vehicle (UAV)-based applications. Herein, using methods such as keyword co-contribution analysis author co-occurrence bibliometrics, we found out hot-spots of this field. UAV platforms equipped with various types cameras other advanced sensors, combined artificial intelligence (AI) algorithms, especially deep learning (DL) were reviewed. Acknowledging critical role comprehending pests, along their defining traits, provided a concise overview indispensable foundational knowledge. Additionally, some widely used traditional machine (ML) algorithms presented performance results tabulated form comparison. Furthermore, summarized monitoring techniques DL introduced application prediction classification. Take it step further, newest most concerned applications large language model (LLM) vision (LVM) also mentioned herein. At end review, comprehensively discussed deficiencies existing research challenges be solved, well practical solutions suggestions near future.
Язык: Английский
Процитировано
11Smart Agricultural Technology, Год журнала: 2025, Номер unknown, С. 100824 - 100824
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113197 - 113197
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
2Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101787 - 101787
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Environmental earth sciences, Год журнала: 2025, Номер unknown, С. 357 - 382
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Computer Standards & Interfaces, Год журнала: 2025, Номер unknown, С. 104005 - 104005
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110373 - 110373
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
1Computers and Electronics in Agriculture, Год журнала: 2024, Номер 227, С. 109587 - 109587
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
4Soil Advances, Год журнала: 2025, Номер 3, С. 100034 - 100034
Опубликована: Янв. 31, 2025
Язык: Английский
Процитировано
0Agriculture, Год журнала: 2025, Номер 15(8), С. 847 - 847
Опубликована: Апрель 14, 2025
This paper explores the transformative potential of Foundation Models (FMs) in agriculture, driven by need for efficient and intelligent decision support systems face growing global population climate change. It begins outlining development history FMs, including general FM training processes, application trends challenges, before focusing on Agricultural (AFMs). The examines diversity applications AFMs areas like crop classification, pest detection, image segmentation, delves into specific use cases such as agricultural knowledge question-answering, video analysis, support, robotics. Furthermore, it discusses challenges faced AFMs, data acquisition, efficiency, shift, practical challenges. Finally, future directions emphasizing multimodal applications, integrating across food sectors, decision-making systems, ultimately aiming to promote digitalization transformation agriculture.
Язык: Английский
Процитировано
0