The Impact of the EU’s AI Act and Data Act on Digital Farming Technologies DOI

Lucas Ramon Ciutat

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 218 - 229

Опубликована: Ноя. 15, 2024

Язык: Английский

Intelligent agriculture: deep learning in UAV-based remote sensing imagery for crop diseases and pests detection DOI Creative Commons
Hongyan Zhu, Chengzhi Lin,

G. Liu

и другие.

Frontiers in Plant Science, Год журнала: 2024, Номер 15

Опубликована: Окт. 24, 2024

Controlling crop diseases and pests is essential for intelligent agriculture (IA) due to the significant reduction in yield quality caused by these problems. In recent years, remote sensing (RS) areas has been prevailed over unmanned aerial vehicle (UAV)-based applications. Herein, using methods such as keyword co-contribution analysis author co-occurrence bibliometrics, we found out hot-spots of this field. UAV platforms equipped with various types cameras other advanced sensors, combined artificial intelligence (AI) algorithms, especially deep learning (DL) were reviewed. Acknowledging critical role comprehending pests, along their defining traits, provided a concise overview indispensable foundational knowledge. Additionally, some widely used traditional machine (ML) algorithms presented performance results tabulated form comparison. Furthermore, summarized monitoring techniques DL introduced application prediction classification. Take it step further, newest most concerned applications large language model (LLM) vision (LVM) also mentioned herein. At end review, comprehensively discussed deficiencies existing research challenges be solved, well practical solutions suggestions near future.

Язык: Английский

Процитировано

11

Analysing the potential of ChatGPT to support plant disease risk forecasting systems DOI Creative Commons
Roberta Calone, Elisabetta Raparelli, Sofia Bajocco

и другие.

Smart Agricultural Technology, Год журнала: 2025, Номер unknown, С. 100824 - 100824

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Knowledge assimilation: Implementing knowledge-guided agricultural large language model DOI
Jingchi Jiang, Lian Yan, Haifeng Liu

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113197 - 113197

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

The Role of Generative Artificial Intelligence in Digital Agri-Food DOI Creative Commons
Sakib Shahriar, Maria G. Corradini, Shayan Sharif

и другие.

Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101787 - 101787

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

2

Climate-Resilient Agriculture: Leveraging Language Models for Mitigation and Adaptation DOI
Sathyanarayan Rao, Praveen Ranganath

Environmental earth sciences, Год журнала: 2025, Номер unknown, С. 357 - 382

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Fields of the Future: Digital Transformation in Smart Agriculture with Large Language Models and Generative AI DOI
Tawseef Ayoub Shaikh,

Tabasum Rasool,

Waseem Ahmad Mir

и другие.

Computer Standards & Interfaces, Год журнала: 2025, Номер unknown, С. 104005 - 104005

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

RicePest-DETR: A transformer-based model for accurately identifying small rice pest by end-to-end detection mechanism DOI
Jianqi Liu, Chenchen Zhou, Yujun Zhu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110373 - 110373

Опубликована: Апрель 17, 2025

Язык: Английский

Процитировано

1

Visual large language model for wheat disease diagnosis in the wild DOI
Kunpeng Zhang, Li Ma, Beibei Cui

и другие.

Computers and Electronics in Agriculture, Год журнала: 2024, Номер 227, С. 109587 - 109587

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

4

Evaluating AI-Generated Responses from Different Chatbots to Soil Science-Related Questions DOI Creative Commons
Javad Khanifar

Soil Advances, Год журнала: 2025, Номер 3, С. 100034 - 100034

Опубликована: Янв. 31, 2025

Язык: Английский

Процитировано

0

Foundation Models in Agriculture: A Comprehensive Review DOI Creative Commons

Shanbing Yin,

Yongming Xi,

Xun Zhang

и другие.

Agriculture, Год журнала: 2025, Номер 15(8), С. 847 - 847

Опубликована: Апрель 14, 2025

This paper explores the transformative potential of Foundation Models (FMs) in agriculture, driven by need for efficient and intelligent decision support systems face growing global population climate change. It begins outlining development history FMs, including general FM training processes, application trends challenges, before focusing on Agricultural (AFMs). The examines diversity applications AFMs areas like crop classification, pest detection, image segmentation, delves into specific use cases such as agricultural knowledge question-answering, video analysis, support, robotics. Furthermore, it discusses challenges faced AFMs, data acquisition, efficiency, shift, practical challenges. Finally, future directions emphasizing multimodal applications, integrating across food sectors, decision-making systems, ultimately aiming to promote digitalization transformation agriculture.

Язык: Английский

Процитировано

0