COMPARATIVE ANALYSIS OF MODIFICATIONS OF U-NET NEURAL NETWORK ARCHITECTURES IN THE PROBLEM OF MEDICAL IMAGE SEGMENTATION DOI Creative Commons
Anna Dostovalova, Andrey Gorshenin,

Yu.V. Starichkova

и другие.

Digital Diagnostics, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 21, 2024

Data processing methods using neural networks are gaining increasing popularity in a variety of medical diagnostic problems. Most often, such used the study images human organs CT scan and magnetic resonance imaging, ultrasound other non-invasive research methods. Diagnosing pathology this case is problem segmenting image, that is, searching for groups (regions) pixels characterize certain objects them. One most successful solving U-Net network architecture developed 2015. This review examines various modifications classic architecture. The reviewed papers divided into several key areas: encoder decoder, use attention blocks, combination with elements architectures, introducing additional features, transfer learning approaches small sets real data. Various training considered, which best values metrics achieved literature given (similarity coefficient Dice, intersection over union IoU, overall accuracy some others). A summary table provided indicating types analyzed pathologies detected on Promising directions further to improve quality segmentation problems outlined. can be useful determining set tools identifying diseases, primarily cancers. presented algorithms basis professional intelligent assistants.

Язык: Английский

FusionLungNet: Multi-scale fusion convolution with refinement network for lung CT image segmentation DOI
Sadjad Rezvani, Mansoor Fateh, Yeganeh Jalali

и другие.

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 107, С. 107858 - 107858

Опубликована: Март 29, 2025

Язык: Английский

Процитировано

2

GrMoNAS: A granularity-based multi-objective NAS framework for efficient medical diagnosis DOI
Xin Liu, Jie Tian, Peiyong Duan

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 171, С. 108118 - 108118

Опубликована: Фев. 15, 2024

Язык: Английский

Процитировано

6

Rethinking neural architecture representation for predictors: Topological encoding in pixel space DOI
Caiyang Yu, Jian Wang, Yifan Wang

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 102925 - 102925

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Efficient Detection of Foodborne Pathogens via SERS and Deep Learning: An ADMIN-Optimized NAS-Unet Approach DOI
Zilong Wang, Pei Liang,

Jinglei Zhai

и другие.

Journal of Hazardous Materials, Год журнала: 2025, Номер 489, С. 137581 - 137581

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0

M3bunet:Mobile Mean Max Unet for Pancreas Segmentation on Ct-Scans DOI

Juwita Juwita,

Ghulam Mubashar Hassan, Naveed Akhtar

и другие.

Опубликована: Янв. 1, 2024

Segmenting organs in CT scan images is a necessary process for multiple downstream medical image analysis tasks. Currently, manual segmentation by radiologists prevalent, especially like the pancreas, which requires high level of domain expertise reliable due to factors small organ size, occlusion, and varying shapes. When resorting automated pancreas segmentation, these translate limited labeled data train effective models. Consequently, performance contemporary models still not within acceptable ranges. To improve that, we propose M3BUNet, fusion MobileNet U-Net neural networks, equipped with novel Mean-Max (MM) attention that operates two stages gradually segment from coarse fine mask guidance object detection. This approach empowers network surpass achieved similar architectures achieve results are on par complex state-of-the-art methods, all while maintaining low parameter count. Additionally, introduce external contour as preprocessing step stage assist through standardization. For stage, found applying wavelet decomposition filter create multi-input enhances performance. We extensively evaluate our NIH MSD datasets. Our demonstrates improvement, achieving an average DSC value up 89.53±1.82 IOU score 81.16±0.03 NIH, 88.60 ±1.48 79.90±2.19 MSD.

Язык: Английский

Процитировано

3

CerviSegNet-DistillPlus: An Efficient Knowledge Distillation Model for Enhancing Early Detection of Cervical Cancer Pathology DOI Creative Commons
Jie Kang, Ning Li

IEEE Access, Год журнала: 2024, Номер 12, С. 85134 - 85149

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

3

PSO-based lightweight neural architecture search for object detection DOI
Tao Gong, Yongjie Ma

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 90, С. 101684 - 101684

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

2

A review of AutoML optimization techniques for medical image applications DOI
Muhammad Junaid Ali, Mokhtar Essaid, Laurent Moalic

и другие.

Computerized Medical Imaging and Graphics, Год журнала: 2024, Номер 118, С. 102441 - 102441

Опубликована: Окт. 16, 2024

Язык: Английский

Процитировано

1

Optimal Design of Vawt Based on Radial Basis Function Model and Differential Evolution DOI

Xianglei Ji,

Shuhui Xu,

Liying Gao

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Процитировано

0

Robust Neural Architecture Search Using Differential Evolution for Medical Images DOI
Muhammad Junaid Ali, Laurent Moalic, Mokhtar Essaid

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 163 - 179

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0