Biomedical Signal Processing and Control, Год журнала: 2024, Номер 100, С. 107040 - 107040
Опубликована: Окт. 7, 2024
Язык: Английский
Biomedical Signal Processing and Control, Год журнала: 2024, Номер 100, С. 107040 - 107040
Опубликована: Окт. 7, 2024
Язык: Английский
Опубликована: Янв. 7, 2025
-
Процитировано
0Multimedia Tools and Applications, Год журнала: 2025, Номер unknown
Опубликована: Фев. 14, 2025
Язык: Английский
Процитировано
0IEEE Access, Год журнала: 2024, Номер 12, С. 78611 - 78623
Опубликована: Янв. 1, 2024
According to the International Diabetes Federation (IDF), roughly 33% of individuals affected by diabetes exhibit diagnoses encompassing diverse severity diabetic retinopathy. In year 2020, approximately 463 million adults within age bracket 20 79 were documented as sufferers on a global scale. Projections suggest rise 700 2045. Proposed automated retinopathy detection methods aim reduce ophthalmologist workload. The study presents Robust Fuzzy Local Information K-Means Clustering algorithm, an advanced iteration classical K-means clustering approach, integrating localized information parameters tailored individual clusters. Comparative analysis is conducted between performance and Modified C Means clustering, latter which incorporates median adjustment parameter augment for detection. results are evaluated three different datasets: IDRiD, Kaggle, fundus images collected from Shiva Netralaya Center, India. Achieving 94.4% accuracy rate average execution time 17.11 seconds, proposed algorithm aims adeptly categorize substantial volume retinal images, thereby improving meeting crucial demand prompt precise in healthcare.
Язык: Английский
Процитировано
2Biomedical Signal Processing and Control, Год журнала: 2024, Номер 99, С. 106790 - 106790
Опубликована: Сен. 12, 2024
Язык: Английский
Процитировано
2International Journal of Innovative Science and Research Technology (IJISRT), Год журнала: 2024, Номер unknown, С. 1991 - 2004
Опубликована: Авг. 7, 2024
This research provides a comprehensive examination of machine learning models for predicting diabetes-related ocular diseases, with focus on Logistic Regression versus more advanced approaches. A large dataset encompassing variety lifestyle and health factors is used in the study to extensively train analyze multiple order demonstrate their predictive utility. The thorough evaluation results illuminated subtle differences performance between other algorithms, offering insightful information about pros cons each terms risk diabetic retinopathy complications relating eyes. findings reveal crucial themes additional advancement realm modeling eye disorders, process verifying that logistic regression works well specific situations.
Язык: Английский
Процитировано
1Biomedical Signal Processing and Control, Год журнала: 2024, Номер 100, С. 107035 - 107035
Опубликована: Окт. 28, 2024
Язык: Английский
Процитировано
1IEEE Access, Год журнала: 2024, Номер 12, С. 171221 - 171240
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
1Deleted Journal, Год журнала: 2024, Номер 6(07), С. 2398 - 2407
Опубликована: Июль 26, 2024
The Diabetic Retinopathy Poses a significant risk of vision loss if not detected early. Deep learning has made Substantial strides in classifying images, enhancing screening accuracy and efficiency paper review the current advancement application deep for image classification. Convolutional Neural Network, transfer have demonstrated notable improvement identifying stages. This emphasizes importance collaborative efforts innovative technologies creating robust, interpretable clinically relevant solution early detection management Retinopathy. By harnessing these advanced techniques, health care providers can better manage increasing burden Retinopathy, ultimately patient reducing Loss
Язык: Английский
Процитировано
0EAI Endorsed Transactions on Pervasive Health and Technology, Год журнала: 2024, Номер 10
Опубликована: Авг. 22, 2024
Tuberculosis (TB) remains a significant global health challenge, necessitating accurate and efficient diagnostic tools. This study introduces novel approach combining VGG19, deep convolutional neural network model, with newly developed Zebra Optimization Algorithm (ZOA) to enhance the accuracy of TB detection from chest X-ray images. The Algorithm, inspired by social behavior zebras, was applied optimize hyperparameters VGG19 aiming improve model's generalizability performance. Our method evaluated using well-defined metric system that included accuracy, sensitivity, specificity. Results indicate combination ZOA significantly outperforms traditional methods, achieving high rate, which underscores potential hybrid approaches in image analysis.
Язык: Английский
Процитировано
0IEEE Access, Год журнала: 2024, Номер 12, С. 172499 - 172536
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0