An Online Retail Platform's Structure and Performance Optimization with Artificial Intelligence and Blockchain Technologies DOI

Shikha Tiwari,

Deeksha Thakur,

Suresh Kant Verma

и другие.

Опубликована: Ноя. 29, 2024

Язык: Английский

Cloud-Based Optimized Deep Learning Framework for Automated Glaucoma Detection Using Stationary Wavelet Transform and Improved Grey-Wolf-Optimization with ELM Approach DOI Creative Commons
Debendra Muduli, Syed Irfan Yaqoob, Santosh Kumar Sharma

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104682 - 104682

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

1

An innovative approach to classify meniscus tears by reducing vision transformers features with elasticnet approach DOI Creative Commons

Hakkı Murat Genç,

Canan Koç, Esra Yüzgeç Özdemir

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(4)

Опубликована: Март 11, 2025

Язык: Английский

Процитировано

0

Glaucoma diagnosis using Gabor and entropy coded Sine Cosine integration in adaptive partial swarm optimization-based FAWT DOI
Rajneesh Kumar Patel, Nancy Kumari, Siddharth Singh Chouhan

и другие.

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 107, С. 107832 - 107832

Опубликована: Март 26, 2025

Язык: Английский

Процитировано

0

PollenMorph AI: quantum contours based segmentation and deep learning for pollen recognition using microscopic images DOI

Mahalakshmi Rajendran,

S. Mahadevan

Iran Journal of Computer Science, Год журнала: 2025, Номер unknown

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

0

An Intelligent Model of Segmentation and Classification Using Enhanced Optimization‐Based Attentive Mask RCNN and Recurrent MobileNet With LSTM for Multiple Sclerosis Types With Clinical Brain MRI DOI

Gottipati Gopichand,

Kovvuri N. Bhargavi,

M. V. S. Ramprasad

и другие.

NMR in Biomedicine, Год журнала: 2025, Номер 38(6)

Опубликована: Апрель 24, 2025

ABSTRACT In healthcare sector, magnetic resonance imaging (MRI) images are taken for multiple sclerosis (MS) assessment, classification, and management. However, interpreting an MRI scan requires exceptional amount of skill because abnormalities on scans frequently inconsistent with clinical symptoms, making it difficult to convert the findings into effective treatment strategies. Furthermore, is expensive process, its frequent utilization monitor illness increases costs. To overcome these drawbacks, this research employs advanced technological approaches develop a deep learning system classifying types MS through brain scans. The major innovation model influence convolution network attention concept recurrent‐based disorder; also proposes optimization algorithm tuning parameter enhance performance. Initially, total as 3427 collected from database, in which samples categorized training testing phase. Here, segmentation carried out by adaptive attentive‐based mask regional neural (AA‐MRCNN). phase, MRCNN's parameters finely tuned enhanced pine cone (EPCOA) guarantee outstanding efficiency. Further, segmented image given recurrent MobileNet long short term memory (RM‐LSTM) getting classification outcomes. Through experimental analysis, acquired 95.4% accuracy, 95.3% sensitivity, specificity. Hence, results prove that has high potential appropriately disorder.

Язык: Английский

Процитировано

0

ODCS-NSNP: Optic disc and cup segmentation using deep networks enhanced by nonlinear spiking neural P systems DOI

Wang Li,

Meichen Xia, Hong Peng

и другие.

Biomedical Signal Processing and Control, Год журнала: 2025, Номер 108, С. 107935 - 107935

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

Integrating Drone in Agriculture: Addressing Technology, Challenges, Solutions, and Applications to Drive Economic Growth DOI
Siddharth Singh Chouhan, Rajneesh Kumar Patel, Uday Pratap Singh

и другие.

Remote Sensing Applications Society and Environment, Год журнала: 2025, Номер unknown, С. 101576 - 101576

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Pneumonia Screening From Radiology Images Using Homomorphic Transformation Filter‐Based FAWT and Customized VGG‐16 DOI
Rajneesh Kumar Patel,

Ankit Choudhary,

Nancy Kumari

и другие.

International Journal of Imaging Systems and Technology, Год журнала: 2025, Номер 35(3)

Опубликована: Май 1, 2025

ABSTRACT Pneumonia, attributable to pathogens and autoimmune disorders, accounts for approximately 450 million cases annually. Chest x‐ray analysis remains the gold standard pneumonia detection, DL has revolutionized study of high‐dimensional data, including images, audio, video. This research enhances validates a CAD system distinguishing from normal health states using imaging. paper presents novel methodology that integrates CLHAE Homographic Transformation Filter‐based Flexible Analytical Wavelet Transform (HTF‐FAWT) image decomposition, enabling systematic decomposition pre‐processed input images into four distinct sub‐band across six hierarchical levels. Feature extraction employs VGG‐16 Deep Learning techniques, with extracted features subsequently classified by support vector machine Morlet, Mexican‐hat wavelet, radial basis function kernels. Employing tenfold cross‐validation, our model exhibited remarkable classification performance, achieving an accuracy 97.51%, specificity 97.77%, sensitivity 96.5% in spotting via x‐rays. The utility feature maps Grad‐CAM highlighting critical regions accurate prediction was confirmed, offering visual validation model's efficacy. Statistical examinations validate superior performance proposed framework, demonstrating its potential as expedient diagnostic tool medical imaging specialists rapidly detecting pneumonia. It demonstrates effectiveness various classifiers classification, method outperforming state‐of‐the‐art approaches. diagnosis high (97.51%), visualization, automated interpretation, faster, reliable screening clinical integration reducing reliance on manual assessment radiology.

Язык: Английский

Процитировано

0

Comparative Analysis of Convolutional Neural Network and Support Vector Machine for the Prediction of Alzheimer's Disease DOI

Nimish Selot,

Aayush Panwa,

Anju Shukla

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 56 - 66

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Transfer Learning with ResNet50 for Enhanced Mammographic Breast Cancer Identification DOI

S.V. Deshpande,

Rajneesh Kumar Patel, Siddharth Singh Chouhan

и другие.

Опубликована: Окт. 4, 2024

Язык: Английский

Процитировано

1