Опубликована: Ноя. 29, 2024
Язык: Английский
Опубликована: Ноя. 29, 2024
Язык: Английский
Results in Engineering, Год журнала: 2025, Номер unknown, С. 104682 - 104682
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
1The Journal of Supercomputing, Год журнала: 2025, Номер 81(4)
Опубликована: Март 11, 2025
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 107, С. 107832 - 107832
Опубликована: Март 26, 2025
Язык: Английский
Процитировано
0Iran Journal of Computer Science, Год журнала: 2025, Номер unknown
Опубликована: Апрель 2, 2025
Язык: Английский
Процитировано
0NMR in Biomedicine, Год журнала: 2025, Номер 38(6)
Опубликована: Апрель 24, 2025
ABSTRACT In healthcare sector, magnetic resonance imaging (MRI) images are taken for multiple sclerosis (MS) assessment, classification, and management. However, interpreting an MRI scan requires exceptional amount of skill because abnormalities on scans frequently inconsistent with clinical symptoms, making it difficult to convert the findings into effective treatment strategies. Furthermore, is expensive process, its frequent utilization monitor illness increases costs. To overcome these drawbacks, this research employs advanced technological approaches develop a deep learning system classifying types MS through brain scans. The major innovation model influence convolution network attention concept recurrent‐based disorder; also proposes optimization algorithm tuning parameter enhance performance. Initially, total as 3427 collected from database, in which samples categorized training testing phase. Here, segmentation carried out by adaptive attentive‐based mask regional neural (AA‐MRCNN). phase, MRCNN's parameters finely tuned enhanced pine cone (EPCOA) guarantee outstanding efficiency. Further, segmented image given recurrent MobileNet long short term memory (RM‐LSTM) getting classification outcomes. Through experimental analysis, acquired 95.4% accuracy, 95.3% sensitivity, specificity. Hence, results prove that has high potential appropriately disorder.
Язык: Английский
Процитировано
0Biomedical Signal Processing and Control, Год журнала: 2025, Номер 108, С. 107935 - 107935
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0Remote Sensing Applications Society and Environment, Год журнала: 2025, Номер unknown, С. 101576 - 101576
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0International Journal of Imaging Systems and Technology, Год журнала: 2025, Номер 35(3)
Опубликована: Май 1, 2025
ABSTRACT Pneumonia, attributable to pathogens and autoimmune disorders, accounts for approximately 450 million cases annually. Chest x‐ray analysis remains the gold standard pneumonia detection, DL has revolutionized study of high‐dimensional data, including images, audio, video. This research enhances validates a CAD system distinguishing from normal health states using imaging. paper presents novel methodology that integrates CLHAE Homographic Transformation Filter‐based Flexible Analytical Wavelet Transform (HTF‐FAWT) image decomposition, enabling systematic decomposition pre‐processed input images into four distinct sub‐band across six hierarchical levels. Feature extraction employs VGG‐16 Deep Learning techniques, with extracted features subsequently classified by support vector machine Morlet, Mexican‐hat wavelet, radial basis function kernels. Employing tenfold cross‐validation, our model exhibited remarkable classification performance, achieving an accuracy 97.51%, specificity 97.77%, sensitivity 96.5% in spotting via x‐rays. The utility feature maps Grad‐CAM highlighting critical regions accurate prediction was confirmed, offering visual validation model's efficacy. Statistical examinations validate superior performance proposed framework, demonstrating its potential as expedient diagnostic tool medical imaging specialists rapidly detecting pneumonia. It demonstrates effectiveness various classifiers classification, method outperforming state‐of‐the‐art approaches. diagnosis high (97.51%), visualization, automated interpretation, faster, reliable screening clinical integration reducing reliance on manual assessment radiology.
Язык: Английский
Процитировано
0Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 56 - 66
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Опубликована: Окт. 4, 2024
Язык: Английский
Процитировано
1