Soil Dynamics and Earthquake Engineering, Год журнала: 2024, Номер 188, С. 109075 - 109075
Опубликована: Ноя. 14, 2024
Язык: Английский
Soil Dynamics and Earthquake Engineering, Год журнала: 2024, Номер 188, С. 109075 - 109075
Опубликована: Ноя. 14, 2024
Язык: Английский
Results in Engineering, Год журнала: 2024, Номер 21, С. 101930 - 101930
Опубликована: Март 1, 2024
Accurately predicting key features in WWTPs is essential for optimizing plant performance and minimizing operational costs. This study assesses the potential of various machine learning models inflow to anoxic sludge reactors. Firstly, it conducts a comprehensive evaluation diverse models, including k-Nearest Neighbors (kNN), Random Forest (RF), XGBoost, CatBoost, LightGBM, Decision Tree Regression (DTR), flow into Anoxic section under weather conditions (dry, rainy, stormy). Secondly, introduces parsimonious guided by variable importance from XGBoost algorithm. Furthermore, employs SHAP (SHapley Additive exPlanations) elucidate model predictions, providing insights contribution each feature. Data COST Benchmark Simulation Model (BSM1) used verify investigated models' effectiveness. Each dataset consists 14 days influent data at 15-minute intervals, with 80% training. Results show that ensemble methods, particularly CatBoost demonstrate satisfactory predictive results presence increased variability rainy stormy conditions. Notably, achieve average Mean Absolute Percentage Error values 1.33% 1.59%, outperforming other methods.
Язык: Английский
Процитировано
26Construction and Building Materials, Год журнала: 2024, Номер 449, С. 138242 - 138242
Опубликована: Сен. 13, 2024
Язык: Английский
Процитировано
11Ocean Engineering, Год журнала: 2025, Номер 319, С. 120269 - 120269
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
1Materials Today Communications, Год журнала: 2025, Номер 43, С. 111627 - 111627
Опубликована: Янв. 15, 2025
Язык: Английский
Процитировано
1Computers and Geotechnics, Год журнала: 2025, Номер 181, С. 107130 - 107130
Опубликована: Фев. 10, 2025
Язык: Английский
Процитировано
1Energy, Год журнала: 2024, Номер 296, С. 131146 - 131146
Опубликована: Апрель 3, 2024
Язык: Английский
Процитировано
6Structures, Год журнала: 2024, Номер 65, С. 106774 - 106774
Опубликована: Июнь 24, 2024
Язык: Английский
Процитировано
5Underground Space, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0International Journal for Numerical and Analytical Methods in Geomechanics, Год журнала: 2025, Номер unknown
Опубликована: Янв. 15, 2025
ABSTRACT Most of the robust artificial intelligence (AI)‐based constitutive models are developed with synthetic datasets generated from traditional models. Therefore, they fundamentally rely on rather than laboratory test results. Also, their potential use within geotechnical engineering communities is limited due to unavailability along model code files. In this study, data‐driven using only databases and deep learning (DL) techniques. The database was prepared by conducting cyclic direct simple shear (CDSS) tests reconstituted sand, that is, PDX sand. stacked long short‐term memory (LSTM) network its variants considered for developing predictive strain ( γ [%]) excess pore pressure ratio r u ) time histories. suitable input parameters (IPs) selected based physics behind generation (%) liquefiable sands. predicted responses agree well in most cases used predict dynamic soil properties same modeling framework extended other sand compared existing AI‐based verify practical applicability. summary, it observed though trained histories reasonably well; however, struggled hysteresis loops at higher cycles. more research needed enhance predictability future before them practice simulating response.
Язык: Английский
Процитировано
0Marine Georesources and Geotechnology, Год журнала: 2025, Номер unknown, С. 1 - 29
Опубликована: Янв. 19, 2025
Язык: Английский
Процитировано
0