Knowledge structure and research progress in earthquake-induced liquefaction assessment from 2000 to 2023: A scientometric analysis incorporating domain knowledge DOI
Hongning Qi, Jian Zhou, Kang Peng

и другие.

Soil Dynamics and Earthquake Engineering, Год журнала: 2024, Номер 188, С. 109075 - 109075

Опубликована: Ноя. 14, 2024

Язык: Английский

Explainable machine learning methods for predicting water treatment plant features under varying weather conditions DOI Creative Commons

Mohammed Al Saleem,

Fouzi Harrou, Ying Sun

и другие.

Results in Engineering, Год журнала: 2024, Номер 21, С. 101930 - 101930

Опубликована: Март 1, 2024

Accurately predicting key features in WWTPs is essential for optimizing plant performance and minimizing operational costs. This study assesses the potential of various machine learning models inflow to anoxic sludge reactors. Firstly, it conducts a comprehensive evaluation diverse models, including k-Nearest Neighbors (kNN), Random Forest (RF), XGBoost, CatBoost, LightGBM, Decision Tree Regression (DTR), flow into Anoxic section under weather conditions (dry, rainy, stormy). Secondly, introduces parsimonious guided by variable importance from XGBoost algorithm. Furthermore, employs SHAP (SHapley Additive exPlanations) elucidate model predictions, providing insights contribution each feature. Data COST Benchmark Simulation Model (BSM1) used verify investigated models' effectiveness. Each dataset consists 14 days influent data at 15-minute intervals, with 80% training. Results show that ensemble methods, particularly CatBoost demonstrate satisfactory predictive results presence increased variability rainy stormy conditions. Notably, achieve average Mean Absolute Percentage Error values 1.33% 1.59%, outperforming other methods.

Язык: Английский

Процитировано

26

Hybrid XGB model for predicting unconfined compressive strength of solid waste-cement-stabilized cohesive soil DOI
Qianglong Yao, Yiliang Tu, Jiahui Yang

и другие.

Construction and Building Materials, Год журнала: 2024, Номер 449, С. 138242 - 138242

Опубликована: Сен. 13, 2024

Язык: Английский

Процитировано

11

Performance evaluation of regular and radial-fin-integrated pipe sections buried in soft clayey seabed under uplift buckling DOI
Debtanu Seth, Bappaditya Manna, J. T. Shahu

и другие.

Ocean Engineering, Год журнала: 2025, Номер 319, С. 120269 - 120269

Опубликована: Янв. 6, 2025

Язык: Английский

Процитировано

1

Efficient prediction of California bearing ratio in solid waste-cement-stabilized soil using improved hybrid extreme gradient boosting model DOI
Yiliang Tu, Qianglong Yao, Shuitao Gu

и другие.

Materials Today Communications, Год журнала: 2025, Номер 43, С. 111627 - 111627

Опубликована: Янв. 15, 2025

Язык: Английский

Процитировано

1

Evaluation of compression index of red mud by machine learning interpretability methods DOI
Fan Yang,

Jieya Zhang,

Mingxing Xie

и другие.

Computers and Geotechnics, Год журнала: 2025, Номер 181, С. 107130 - 107130

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

1

Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China DOI
Ruyang Yu, Kai Zhang, R. Brindha

и другие.

Energy, Год журнала: 2024, Номер 296, С. 131146 - 131146

Опубликована: Апрель 3, 2024

Язык: Английский

Процитировано

6

Seismic fragility analysis of RC frame structures based on IDA analysis and machine learning DOI
Weixiao Xu,

Yanshun Zhao,

Weisong Yang

и другие.

Structures, Год журнала: 2024, Номер 65, С. 106774 - 106774

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

5

Deep learning to evaluate seismic-induced soil liquefaction and modified transfer learning between various data sources DOI Creative Commons
Hongwei Guo, Chao Zhang, Hongyuan Fang

и другие.

Underground Space, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Evaluation and Future Prospects of Data‐Driven Intelligence‐Based Framework for Predicting Cyclic Behavior of Reconstituted Sand DOI Open Access
Kaushik Jas, Amalesh Jana, G. R. Dodagoudar

и другие.

International Journal for Numerical and Analytical Methods in Geomechanics, Год журнала: 2025, Номер unknown

Опубликована: Янв. 15, 2025

ABSTRACT Most of the robust artificial intelligence (AI)‐based constitutive models are developed with synthetic datasets generated from traditional models. Therefore, they fundamentally rely on rather than laboratory test results. Also, their potential use within geotechnical engineering communities is limited due to unavailability along model code files. In this study, data‐driven using only databases and deep learning (DL) techniques. The database was prepared by conducting cyclic direct simple shear (CDSS) tests reconstituted sand, that is, PDX sand. stacked long short‐term memory (LSTM) network its variants considered for developing predictive strain ( γ [%]) excess pore pressure ratio r u ) time histories. suitable input parameters (IPs) selected based physics behind generation (%) liquefiable sands. predicted responses agree well in most cases used predict dynamic soil properties same modeling framework extended other sand compared existing AI‐based verify practical applicability. summary, it observed though trained histories reasonably well; however, struggled hysteresis loops at higher cycles. more research needed enhance predictability future before them practice simulating response.

Язык: Английский

Процитировано

0

Frontier trends and risk control research on bauxite dynamic separation during sea transport: A review DOI

Maocheng Huang,

Yueyang Sun,

Yu Zhou

и другие.

Marine Georesources and Geotechnology, Год журнала: 2025, Номер unknown, С. 1 - 29

Опубликована: Янв. 19, 2025

Язык: Английский

Процитировано

0