Axial Strength Model for FRP Confined Concrete-Filled Steel Tube Columns DOI Creative Commons

Abdullah,

Hasnain Ali,

Fahad Aslam

и другие.

MATEC Web of Conferences, Год журнала: 2024, Номер 398, С. 01034 - 01034

Опубликована: Янв. 1, 2024

Numerous studies have delved into anticipating the loadcarrying capacity (LC) of fiber-reinforced polymer (FRP)-confined concrete-filled steel tubes (CFST) compression members (SFC) using limited and noisy data. However, none undertaken a comparative assessment accuracy among various modeling techniques based on an extensive refined database. This study aims to introduce analytical model for forecasting LC SFC members. The is developed utilizing database comprising 712 samples, considering mechanism confinement both FRP wraps. By incorporating lateral columns, yields precise predictions. As per experimental database, demonstrates statistics such as MAE = 427, MAPE 283, R2 0.815, RMSE 275, a20-index 0.73, indicating its effectiveness in providing accurate

Язык: Английский

Numerical and machine learning modeling of GFRP confined concrete-steel hollow elliptical columns DOI Creative Commons
Haytham F. Isleem, Qiong Tang, Mostafa M. Alsaadawi

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Авг. 12, 2024

This article investigates the behavior of hybrid FRP Concrete-Steel columns with an elliptical cross section. The investigation was carried out by gathering information through literature and conducting a parametric study, which resulted in 116 data points. Moreover, multiple machine learning predictive models were developed to accurately estimate confined ultimate strain load concrete at rupture tube. Decision Tree (DT), Random Forest (RF), Adaptive Boosting (ADAB), Categorical (CATB), eXtreme Gradient (XGB) techniques utilized for proposed models. Finally, these visually quantitatively verified evaluated. It concluded that CATB XGB are standout models, offering high accuracy strong generalization capabilities. model is slightly superior due its consistently lower error rates during testing, indicating it best this dataset when considering both robustness against overfitting.

Язык: Английский

Процитировано

29

Novel FRP-UHPC-steel double-tube columns subjected to monotonic axial load: Compressive behavior and analytical model DOI

Chong Zhou,

Xincong Yang, Bing Zhang

и другие.

Engineering Structures, Год журнала: 2025, Номер 328, С. 119746 - 119746

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

2

Dynamic behavior of double-column FRP-concrete-steel tubular bridge piers subjected to vehicular impact: Experimental study and numerical analysis DOI
Shuhong Lin, Bing Zhang, Sumei Zhang

и другие.

Engineering Structures, Год журнала: 2025, Номер 331, С. 119966 - 119966

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

1

Concrete-filled GFRP tubes with recycled needle- or granule-shaped GFRP aggregates subjected to axial compression DOI
Bing Zhang,

Chong Zhou,

Guan Lin

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 470, С. 140611 - 140611

Опубликована: Март 4, 2025

Язык: Английский

Процитировано

1

Large-scale FRP-confined concrete-filled steel tubes with practical foundation connections under axial compression and cyclic lateral loads: Experimental study and numerical simulation DOI
Jianguo Wang, Hao Hu,

Ye Pin

и другие.

Thin-Walled Structures, Год журнала: 2025, Номер unknown, С. 113214 - 113214

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

Effects of FRP fiber orientations on four-point bending behaviour of FRP-concrete-steel tubular beams: Experimental study and modeling DOI
Bing Zhang,

Chong Zhou,

Sumei Zhang

и другие.

Engineering Structures, Год журнала: 2024, Номер 322, С. 119191 - 119191

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

5

Investigating the compression behavior of concrete‐filled double‐skin steel elliptical tubular columns by a fusion of finite element analysis and machine learning DOI Open Access

Wei‐Ming Tian,

Haytham F. Isleem, Naga Dheeraj Kumar Reddy Chukka

и другие.

Structural Concrete, Год журнала: 2025, Номер unknown

Опубликована: Март 4, 2025

Abstract This study comprehensively examined the behavior and performance of concrete‐filled double‐skin steel elliptical tubular columns (CFDSSETC) subjected to different loading scenarios. CFDSSETC are gaining attention due their potential offer enhanced structural efficiency architectural versatility compared traditional columns. research uses non‐linear finite element analysis machine learning (ML) assess load‐carrying capacity under axial eccentric compression. To do this, ABAQUS software data from previous were used generate models (FEMs) for eight By expanding existing parameters, 172 more FEMs developed in addition these 8. Parameters such as ratio; area concrete portion; outer width, depth, inner yield strength internal tube; external standard cylinder systematically varied evaluate influence on response CFDSSETC. Additionally, nine ML predict CFDSSETC's load‐bearing capability compression utilizing database that was acquired FEM. work provided a design technique determining short The outcomes revealed raising concrete's area, strength, tubes well reducing tube's depth or width load eccentricity capacity. support vector regressor demonstrated superior predictive among diverse set regression considered. suggested formula has shown good prediction accuracy, with 99% confidence experimental FEM findings. findings provide valuable insights into optimization applications civil engineering structures, contributing advancement sustainable resilient infrastructure systems.

Язык: Английский

Процитировано

0

Impact response of hybrid FRP-concrete-steel double-skin tubular bridge piers with fixed-simply supported boundary conditions: Experimental study and FE analysis DOI
Shuhong Lin, Sumei Zhang, Bing Zhang

и другие.

Structures, Год журнала: 2025, Номер 75, С. 108730 - 108730

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Predicting axial load capacity in elliptical fiber reinforced polymer concrete steel double skin columns using machine learning DOI Creative Commons

F. T. S. Yu,

Haytham F. Isleem,

Walaa J. K. Almoghayer

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 15, 2025

The current study investigates the application of artificial intelligence (AI) techniques, including machine learning (ML) and deep (DL), in predicting ultimate load-carrying capacity strain ofboth hollow solid hybrid elliptical fiber-reinforced polymer (FRP)-concrete-steel double-skin tubular columns (DSTCs) under axial loading. Implemented AI techniques include five ML models - Gene Expression Programming (GEP), Artificial Neural Network (ANN), Random Forest (RF), Adaptive Boosting (ADB), eXtreme Gradient (XGBoost) one DL model Deep (DNN).Due to scarcity experimental data on DSTCs, an accurate finite element (FE) was developed provide additional numerical insights. reliability proposed nonlinear FE validated against existing results. then employed a parametric generate 112 points.The examined impact concrete strength, cross-sectional size inner steel tube, FRP thickness both DSTCs.The effectiveness assessed by comparing models' predictions with results.Among models, XGBoost RF achieved best performance training testing respect determination coefficient (R2), Root Mean Square Error (RMSE), Absolute (MAE) values. provided insights into contributions individual features using SHapley Additive exPlanations (SHAP) approach. results from SHAP, based prediction model, indicate that area core has most significant effect followed unconfined strength total multiplied its elastic modulus. Additionally, user interface platform streamline practical DSTCs.

Язык: Английский

Процитировано

0

Fatigue De‐Bonding Analysis of FRP‐Reinforced Concrete Structures Considering Seawater Erosion DOI
Jie Liu,

Wanyong Wang,

Tong Guo

и другие.

Fatigue & Fracture of Engineering Materials & Structures, Год журнала: 2025, Номер unknown

Опубликована: Апрель 22, 2025

ABSTRACT This study experimentally investigates the fatigue behavior of FRP‐concrete structures under marine‐induced corrosion. Three seawater corrosion environments were simulated, with cyclic load ranges 3901.8 N, 6503.0 and 9104.2 N. Three‐stage degradation three‐stage growth models identified by bond stiffness residual slip accumulation, respectively. Fatigue strength decreased exposure, more severe prolonged exposure. For example, original‐salinity dry‐wet cycle condition a range number joints cured for 0, 30, 60, 90 days 1,763,238, 1,383,336, 1,219,779, 1,073,708, The relationship between ( N f ) (Δ F was fitted linear logarithmic curve, assessment model proposed. predicted values showed maximum relative error 7%, confirming model's effectiveness in predicting

Язык: Английский

Процитировано

0