
Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Июнь 10, 2024
Язык: Английский
Archives of Computational Methods in Engineering, Год журнала: 2024, Номер unknown
Опубликована: Июнь 10, 2024
Язык: Английский
Journal of Vibration Engineering & Technologies, Год журнала: 2025, Номер 13(1)
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
2Composite Structures, Год журнала: 2025, Номер unknown, С. 119143 - 119143
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Mechanics of Advanced Materials and Structures, Год журнала: 2025, Номер unknown, С. 1 - 24
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
1Composite Structures, Год журнала: 2024, Номер 340, С. 118146 - 118146
Опубликована: Апрель 24, 2024
A plethora of challenging nanomechanical applications deals with ultrasmall composite structures interacting nonlocal media. To capture size dependent behaviors, effective tools Nonlocal Continuum Mechanics can be conveniently adopted, provided that the relevant structural problem is well-posed. crucial improvement in modeling nanobeams on nanofoundations present work respect to formulation based Eringen–Wieghardt approach. Scale effects FG under torsion are effectively captured by exploiting consistent stress-driven integral theory elasticity. novel elastic foundations here introduced. Notably, constitutive behavior describing interaction between twisted and surrounding media modeled spatial convolution driven torsional rotation field. It shown governing mathematically represented an integro-differential formulation. An equivalent simpler differential then proven reduce computational burdens. Exemplar case-studies finally examined show efficacy developed methodology.
Язык: Английский
Процитировано
8International Journal of Engineering Science, Год журнала: 2024, Номер 207, С. 104174 - 104174
Опубликована: Ноя. 27, 2024
Язык: Английский
Процитировано
6International Journal of Dynamics and Control, Год журнала: 2024, Номер 12(8), С. 2648 - 2673
Опубликована: Март 21, 2024
Язык: Английский
Процитировано
5International journal of mechanical system dynamics, Год журнала: 2024, Номер unknown
Опубликована: Дек. 9, 2024
Abstract This paper aims to analyse the free vibrations of doubly curved imperfect shear deformable functionally graded material microshells using a five‐parameter model. Porosity is modeled via modified power‐law rule by logarithmic‐uneven variation along thickness. Coupled axial, transverse, and rotational motion equations for general microsystems are obtained virtual work/energy Hamilton's principle first‐order theory including small size dependence. The modal decomposition method then used obtain solution different geometries microshells: spherical, elliptical, hyperbolic, cylindrical. A detailed study on influence gradation porosity, small‐length scale coefficient, geometrical parameters frequency characteristics microsystem conducted shell geometries.
Язык: Английский
Процитировано
5Mechanics Research Communications, Год журнала: 2025, Номер unknown, С. 104377 - 104377
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0International Journal of Dynamics and Control, Год журнала: 2025, Номер 13(2)
Опубликована: Янв. 17, 2025
Язык: Английский
Процитировано
0Mechanics Based Design of Structures and Machines, Год журнала: 2025, Номер unknown, С. 1 - 31
Опубликована: Янв. 28, 2025
Язык: Английский
Процитировано
0