
npj Materials Sustainability, Год журнала: 2025, Номер 3(1)
Опубликована: Май 17, 2025
Язык: Английский
npj Materials Sustainability, Год журнала: 2025, Номер 3(1)
Опубликована: Май 17, 2025
Язык: Английский
Construction and Building Materials, Год журнала: 2024, Номер 453, С. 139056 - 139056
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
8Ocean Engineering, Год журнала: 2025, Номер 321, С. 120382 - 120382
Опубликована: Янв. 20, 2025
Язык: Английский
Процитировано
1Case Studies in Construction Materials, Год журнала: 2022, Номер 17, С. e01653 - e01653
Опубликована: Ноя. 9, 2022
In this paper, the SHapley Additive exPlanation (SHAP) is utilized in conjunction with ensemble machine learning (EML) model to study creep behaviors of recycled aggregate concrete (RAC) for first time. Five typical EML models, such as Random Forest (RF), Adaptive Boost Machine (AdaBoost), Gradient Boosting Decision Tree (GBDT), Extreme (XGBoost), and Light (LGBM) are considered. The proposed method can sort contributions input features interpret prediction results best model. findings show that existing empirical models fib Model Code 2010 JTG 3362-2018 cannot satisfy requirements RAC behavior because impact ratio other factors ignored. Moreover, water-cement loading age two most significant factors. Therefore, has potential provide insight into performance structures help engineers adjust mechanical behaviors.
Язык: Английский
Процитировано
27Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2024, Номер unknown
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
6Structures, Год журнала: 2023, Номер 58, С. 105338 - 105338
Опубликована: Окт. 12, 2023
Язык: Английский
Процитировано
11International Journal of Pavement Engineering, Год журнала: 2024, Номер 25(1)
Опубликована: Янв. 18, 2024
Emulsified asphalt finds extensive application in pavement repair, addressing issues like road ruts and cracks. While the adsorption behaviour of emulsifiers on oxide surfaces (CaCO3 SiO2) aggregates is influenced by presence phenyl functional groups, precise mechanism this influence remains insufficiently understood. This study employs molecular dynamics models macroscopic experiments to investigate involving emulsifiers, sodium ions, water at aggregate interfaces, quantifying role groups from a perspective. The results reveal following: strong electrostatic attraction between alkaline Na+, leading substantial Na+ adsorption. reduce diffusion coefficient, energy, amounts (−34.6%, −16%, −12.5%), while increasing them acidic (+15.9%, + 14.7%, 27.7%). impact hydrogen bond acceptors, TPSA, emulsifier complexity, altering They enhance potential, affecting different surfaces. In summary, ongoing research framework aims fine-tune through use enhancing strength, amount, aggregates. work holds great significance for optimizing structures.
Язык: Английский
Процитировано
4Buildings, Год журнала: 2024, Номер 14(7), С. 2080 - 2080
Опубликована: Июль 7, 2024
The creep behavior of Ultra-High-Performance Concrete (UHPC) was investigated by machine learning (ML) and SHapley Additive exPlanations (SHAP). Important features were selected feature importance analysis, including water-to-binder ratio, aggregate-to-cement compressive strength at loading age, elastic modulus duration, steel fiber volume content, curing temperature. Four typical ML models—Random Forest (RF), Artificial Neural Network (ANN), Extreme Gradient Boosting Machine (XGBoost), Light (LGBM)—were studied to predict the UHPC. Via Bayesian optimization 5-fold cross-validation, models tuned achieve high accuracy (R2 = 0.9847, 0.9627, 0.9898, 0.9933 for RF, ANN, XGBoost, LGBM, respectively). contribution different ranked. Additionally, SHAP utilized interpret predictions models, four parameters stood out as most influential coefficient: temperature, ratio. results consistent with theoretical understanding. Finally, UHPC curves three cases plotted based on model developed, prediction more accurate than that fib Model Code 2010.
Язык: Английский
Процитировано
4Construction and Building Materials, Год журнала: 2024, Номер 451, С. 138836 - 138836
Опубликована: Окт. 22, 2024
Язык: Английский
Процитировано
4Engineering Structures, Год журнала: 2023, Номер 300, С. 117221 - 117221
Опубликована: Ноя. 30, 2023
Язык: Английский
Процитировано
9Journal of Innovative Engineering and Natural Science, Год журнала: 2025, Номер 5(1), С. 347 - 361
Опубликована: Янв. 20, 2025
Betonun basınç dayanımı, beton bileşenlerinin miktarları ve özellikleri, yaşı, ortam koşulları, deneysel koşullar gibi birçok faktörden etkilenmektedir. en önemli özelliği olan dayanımının belirlenmesi amacıyla makine öğrenimi algoritmaları alternatif bir yöntem olarak kullanılmaktadır. Bu çalışmada, yüksek performanslı betonun dayanımını tahmin etmek 1030 satırlık açık veri seti üzerinde altı farklı modeli kullanılmıştır. Ayrıca mevcut setine türetilen yeni öznitelikler ilave edilerek etme süreçlerindeki etkileri incelenmiştir. bağlamda özniteliklerin algoritmaların performansına katkısı değerlendirilmiş hangi iyi sonuçları verdiği analiz edilmiştir. Elde edilen sonuçlara göre doğru yeteneği süre açısından sonucu XGBoost LightGBM göstermiştir. Buna ilaveten, iki öznitelik daha eklenmesi kullanılan algoritmalarının yeteneğini arttırmıştır.
Процитировано
0