Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Structures, Год журнала: 2025, Номер 74, С. 108654 - 108654
Опубликована: Март 13, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2025, Номер 17(6), С. 2702 - 2702
Опубликована: Март 18, 2025
With the gradual cessation of budget quota standards and emphasis on market-based pricing, accurately predicting project investments has become a critical issue in construction management. This study focuses cost indicator prediction for irrigation drainage projects to address absence farmland water conservancy achieve accurate efficient investment prediction. Engineering characteristics affecting indicators were comprehensively analyzed, principal component analysis (PCA) was employed identify key influencing factors. A model proposed based support vector regression (SVR) optimized using dung beetle optimizer (DBO) algorithm. The DBO algorithm SVR hyperparameters, resolving issues poor generalization long times. Validation 2024 data from Liaoning Province showed that PCA–DBO–SVR achieved superior performance. For electromechanical well projects, root mean square error (RMSE) 1.116 million CNY, absolute (MAE) 0.910 percentage (MAPE) 3.261%, R2 reached 0.962. ditch 0.500 MAE 0.281 MAPE 3.732%, 0.923. outperformed BP, SVR, PCA–SVR models all evaluations, demonstrating higher accuracy better capability. provides theoretical developing offers valuable insights dynamically adjusting national improving fund
Язык: Английский
Процитировано
0Materials and Corrosion, Год журнала: 2025, Номер unknown
Опубликована: Март 23, 2025
ABSTRACT This study aims to construct a prediction model for the internal corrosion rate of offshore pipelines in CO 2 environments, with intention providing effective and protection strategies oil gas industry. By conducting investigative analysis integrating experimental data, principal component (PCA) was employed extract primary influencing factors, which were used as input variables support vector regression (SVR) output variable. The particle swarm optimization (PSO) algorithm utilized optimize hyperparameters model, enhancing accuracy. results indicate that first eight components account 95.9% cumulative contribution, optimized SVR achieved correlation coefficient (R ) exceeding 0.90. Compared other models methods, PCA PSO effectively predicts pipelines, offering theoretical protection.
Язык: Английский
Процитировано
0Structures, Год журнала: 2025, Номер 75, С. 108800 - 108800
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0Minerals, Год журнала: 2025, Номер 15(4), С. 405 - 405
Опубликована: Апрель 11, 2025
A novel artificial intelligence (AI) application was proposed in the current study to predict CTF’s compressive strength (CS). The database contained six input parameters: age of curing for specimens (AS), cement–sand ratio (C/S), maintenance temperature (T), additives (EA), additive type (AT), concentration (AC), and one output parameter: CS. Then, adaptive boosting (AdaBoost) applied existing AI soft computing techniques, using AdaBoost, random forest (RF), SVM, ANN. Data were arbitrarily separated into training (70%) test (30%) sets. Results confirm that AdaBoost RF have best prediction accuracy, with a correlation coefficient (R2) 0.957 between these sets AdaBoost. Using Python 3.9 (64-bit), IDLE (Python 64-bit), PyQt5 achieve machine learning model computation software function interface development, this can quickly property CTF specimens, which saves time costs efficiently backfill researchers developing new eco-efficient components.
Язык: Английский
Процитировано
0Journal of Materials Science, Год журнала: 2024, Номер 59(23), С. 10309 - 10323
Опубликована: Июнь 1, 2024
Язык: Английский
Процитировано
3Construction and Building Materials, Год журнала: 2024, Номер 456, С. 139290 - 139290
Опубликована: Ноя. 26, 2024
Язык: Английский
Процитировано
3Structures, Год журнала: 2024, Номер 71, С. 107999 - 107999
Опубликована: Дек. 20, 2024
Язык: Английский
Процитировано
3Heliyon, Год журнала: 2024, Номер 10(15), С. e35772 - e35772
Опубликована: Авг. 1, 2024
Currently, the field of structural health monitoring (SHM) is focused on investigating non-destructive evaluation techniques for identification damages in concrete structures. Magnetic sensing has particularly gained attention among innovative techniques. Recently, embedded magnetic shape memory alloy (MSMA) wire been introduced cracks components through while providing reinforcement as well. However, available research this regard very scarce. This study analyses parameters affecting capability MSMA crack detection beams. The response surface methodology (RSM) and artificial neural network (ANN) models have used to analyse first time. were trained using experimental data obtained literature. aimed predict alteration flux created by a beam that 1 mm wide after experiencing fracture or crack. results showed change was affected position with respect magnet beam. RSM optimisation maximum when placed at depth 17.5 from top beam, present an axial distance 8.50 permanent magnet. 9.50 % considering aforementioned parameters. ANN prediction optimal 10 1.1 mm, respectively. suggested larger requires diameter multiple sensors magnets
Язык: Английский
Процитировано
2Construction and Building Materials, Год журнала: 2024, Номер 449, С. 138411 - 138411
Опубликована: Сен. 25, 2024
Язык: Английский
Процитировано
2