Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Ноя. 29, 2024
Язык: Английский
Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Ноя. 29, 2024
Язык: Английский
Journal of Building Engineering, Год журнала: 2024, Номер 86, С. 108737 - 108737
Опубликована: Фев. 4, 2024
This study aims to investigate the possibility of using industrial and natural supplementary cementitious materials (SCMs) in self-consolidating concrete (SCC) with lower embodied carbon. Binary ternary blends ground granulated blast furnace slag (GGBFS) zeolite (NZ) at higher range replacements up 50 wt% Portland cement (PC) were used. Ten SCC mixtures various binder compositions evaluated for workability, compressive strength, durability properties, as well corresponding environmental impacts based on life cycle assessment (LCA). A new approach LCA's functional unit which specifies required cover effective height a beam section was used include structural design assessment. Utilizing GGBFS NZ presents positive synergistic effect resulting improved water impermeability, electrical resistivity, resistance chloride migration compared binary + PC or PC. LCA service 100 years showed mixture 10% NZ, 40% could reduce global warming potential by 38% control without SCM. concludes that cleaner enhanced properties reduced footprint can be achieved replacing wt%.
Язык: Английский
Процитировано
12Construction and Building Materials, Год журнала: 2025, Номер 473, С. 140924 - 140924
Опубликована: Март 28, 2025
Язык: Английский
Процитировано
1Powder Technology, Год журнала: 2024, Номер 438, С. 119623 - 119623
Опубликована: Март 13, 2024
Rheological properties are critical for assessing self-consolidating concrete (SCC)'s performance and application. However, predicting these accurately, specifically plastic viscosity yield stress, faces challenges due to inconsistent data, small sample sizes, measurement inaccuracies, with the type of rheometer significantly impacting results. This study meticulously analyzes 348 mixtures from 19 peer-reviewed sources, focusing on experiments that detail types understand variability in rheological properties. Twelve variables, including cement content water-to-powder ratio, were identified as key SCC's rheology. Utilizing these, an XGBoost model demonstrated exceptional accuracy (R2 0.99), markedly better than traditional methods. advance not only aids SCC design but also showcases potential machine learning construction materials research, suggesting a new direction material property prediction innovation construction.
Язык: Английский
Процитировано
7Case Studies in Construction Materials, Год журнала: 2024, Номер 21, С. e03750 - e03750
Опубликована: Сен. 12, 2024
Язык: Английский
Процитировано
7Structures, Год журнала: 2024, Номер 69, С. 107363 - 107363
Опубликована: Сен. 28, 2024
Язык: Английский
Процитировано
4Sustainable Chemistry and Pharmacy, Год журнала: 2025, Номер 43, С. 101915 - 101915
Опубликована: Янв. 19, 2025
Язык: Английский
Процитировано
0Structures, Год журнала: 2025, Номер 74, С. 108645 - 108645
Опубликована: Март 13, 2025
Язык: Английский
Процитировано
0Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0Construction and Building Materials, Год журнала: 2025, Номер 478, С. 141376 - 141376
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Data in Brief, Год журнала: 2024, Номер 53, С. 110256 - 110256
Опубликована: Фев. 28, 2024
This manuscript delineates the assembly and structure of an extensive dataset encompassing more than 2500 self-consolidating concrete (SCC) mixtures, meticulously compiled from 176 scholarly sources. The has been subjected to a thorough curation process eliminate feature redundancy, rectify transcriptional inaccuracies, excise duplicative entries. refinement culminated in primed for advanced data-driven inquiries within SCC research domain, marking novel contribution field. serves as robust foundational resource, poised subsequent augmentations stringent applications data-centric studies. It facilitates detailed characterization properties, potentially through implementation machine learning algorithms, or comparative benchmark assess performance across diverse formulations. In conclusion, crucial resource scholars engaged studying similar substances. offers deep insights into ecological benefits substituting conventional Portland with alternatives. compilation not only advances understanding properties but also contributes broader conversation about sustainable construction practices.
Язык: Английский
Процитировано
3