Bottom-Up Cracks Detection in Road Pavement in Artificial Neural Network DOI

V Sunil Kumar,

Laith H. Alzubaidi,

G. P. Ramesh

и другие.

Опубликована: Окт. 18, 2024

Язык: Английский

Enhanced end-to-end regression algorithm for autonomous road damage detection DOI

Hongjia Xing,

Feng Yang, Xu Qiao

и другие.

The Journal of Supercomputing, Год журнала: 2025, Номер 81(2)

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

1

Modified MobileNetV2 transfer learning model to detect road potholes DOI Creative Commons
Neha Tanwar, Anil V. Turukmane

PeerJ Computer Science, Год журнала: 2025, Номер 11, С. e2519 - e2519

Опубликована: Янв. 21, 2025

Road damage often includes potholes, cracks, lane degradation, and surface shading. Potholes are a common problem in pavements. Detecting them is crucial for maintaining infrastructure ensuring public safety. A thorough assessment of pavement conditions required before planning any preventive repairs. Herein, we report the use transfer learning deep (DL) models to preprocess digital images pavements better pothole detection. Fourteen were evaluated, including MobileNet, MobileNetV2, NASNetMobile, DenseNet121, DenseNet169, InceptionV3, DenseNet201, ResNet152V2, EfficientNetB0, InceptionResNetV2, Xception, EfficientNetV2M. The study introduces modified MobileNetV2 (MMNV2) model designed fast efficient feature extraction. MMNV2 exhibits improved classification, detection, prediction accuracy by adding five-layer pre-trained network framework. It combines learning, neural networks (DNN), which resulted performance compared other models. was tested using dataset 5,000 images. rate 0.001 used optimize model. classified into ‘normal’ or ‘pothole’ categories with 99.95% accuracy. also achieved 100% recall, 99.90% precision, F1-score, 0.05% error rate. uses fewer parameters while delivering results. offers promising solution real-world applications detection assessment.

Язык: Английский

Процитировано

1

Computer Vision Method for Automatic Detection of Microstructure Defects of Concrete DOI Creative Commons
Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’

и другие.

Sensors, Год журнала: 2024, Номер 24(13), С. 4373 - 4373

Опубликована: Июль 5, 2024

The search for structural and microstructural defects using simple human vision is associated with significant errors in determining voids, large pores, violations of the integrity compactness particle packing micro- macrostructure concrete. Computer methods, particular convolutional neural networks, have proven to be reliable tools automatic detection during visual inspection building structures. study’s objective create compare computer algorithms that use networks identify analyze damaged sections concrete samples from different Networks following architectures were selected operation: U-Net, LinkNet, PSPNet. analyzed images are photos obtained by laboratory tests assess quality terms defection structure. During implementation process, changes metrics such as macro-averaged precision, recall, F1-score, well IoU (Jaccard coefficient) accuracy, monitored. best demonstrated U-Net model, supplemented cellular automaton algorithm: precision = 0.91, recall 0.90, F1 0.84, accuracy 0.90. developed segmentation universal show a high highlighting areas interest under any shooting conditions volumes defective zones, regardless their localization. automatization process calculating damage area recommendation “critical/uncritical” format can used condition various types structures, adjust formulation, change technological parameters production.

Язык: Английский

Процитировано

5

Enhancing pavement crack segmentation via semantic diffusion synthesis model for strategic road assessment DOI Creative Commons
Saúl Cano-Ortiz,

Eugenio Sainz-Ortiz,

L. Lloret Iglesias

и другие.

Results in Engineering, Год журнала: 2024, Номер 23, С. 102745 - 102745

Опубликована: Авг. 18, 2024

Язык: Английский

Процитировано

4

PRISMA Review: Drones and AI in Inventory Creation of Signage DOI Creative Commons

Geovanny Satama-Bermeo,

José Manuel López-Guede, Javad Rahebi

и другие.

Drones, Год журнала: 2025, Номер 9(3), С. 221 - 221

Опубликована: Март 19, 2025

This systematic review explores the integration of unmanned aerial vehicles (UAVs) and artificial intelligence (AI) in automating road signage inventory creation, employing preferred reporting items for reviews meta-analyses (PRISMA) methodology to analyze recent advancements. The study evaluates cutting-edge technologies, including UAVs equipped with deep learning algorithms advanced sensors like light detection ranging (LiDAR) multispectral cameras, highlighting their roles enhancing traffic sign classification. Key challenges include detecting minor or partially obscured signs adapting diverse environmental conditions. findings reveal significant progress automation, notable improvements accuracy, efficiency, real-time processing capabilities. However, limitations such as computational demands variability persist. By providing a comprehensive synthesis current methodologies performance metrics, this establishes robust foundation future research advance automated infrastructure management improve safety operational efficiency urban rural settings.

Язык: Английский

Процитировано

0

DEPP: Automated detection of pavement patching and nonslip coatings DOI
Son Dong Nguyen,

Jeong Hoon Song,

Van Phuc Tran

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117315 - 117315

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A novel method for pothole detection based on incomplete point clouds DOI
Junkui Zhong, Deyi Kong, Yuliang Wei

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117344 - 117344

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

YOLOv8 and point cloud fusion for enhanced road pothole detection and quantification DOI Creative Commons
Junkui Zhong, Deyi Kong, Yuliang Wei

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

0

Research on intelligent detection system and method for road surface damage utilizing tire noise DOI
Huixia Li,

Ruohan Chen,

Ritha Nyirandayisabye

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117650 - 117650

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Lightweight deep learning for real-time road distress detection on mobile devices DOI Creative Commons

Yuanyuan Hu,

Ning Chen, Yue Hou

и другие.

Nature Communications, Год журнала: 2025, Номер 16(1)

Опубликована: Май 6, 2025

Язык: Английский

Процитировано

0