Innovative mathematical modelling approaches to diagnose chronic neurological disorders with deep learning DOI Open Access
Faten Khalid Karim, Sara Ghorashi, Anis Ben Ishak

и другие.

Thermal Science, Год журнала: 2024, Номер 28(6 Part B), С. 5217 - 5229

Опубликована: Янв. 1, 2024

Multiple sclerosis impacts the central nervous system, causing symptoms like fatigue, pain, and motor impairments. Diagnosing multiple often requires complex tests, MRI analysis is critical for accuracy. Machine learning has emerged as a key tool in neurological disease diagnosis. This paper introduces diagnosis network (MSDNet), stacked ensemble of deep classifiers detection. The MSDNet uses min-max normalization, artificial hummingbird algorithm feature selection, combination LSTM, DNN, CNN models. Hyperparameters are optimized using enhanced walrus optimization algorithm. Experimental results show MSDNet's superior performance compared to recent methods.

Язык: Английский

XGBoost and genetic programming methods for analysing the vitreous transition of the epoxy adhesive DOI
Songbo Wang,

Yaqiong Cai,

Jun Su

и другие.

Journal of Adhesion Science and Technology, Год журнала: 2025, Номер unknown, С. 1 - 26

Опубликована: Янв. 16, 2025

Fibre-reinforced polymer (FRP) composites are increasingly favoured for strengthening existing structures due to their numerous structural benefits. Nevertheless, the performance of such technology is strongly affected by behaviour epoxy resin adhesive layer, which largely dependent on its curing conditions. This study introduces a deep learning (DL) framework that leverages eXtreme Gradient Boosting (XGBoost) and genetic programming (GP) comprehensively influence scenarios vitreous transition adhesive. An experimental dataset comprising 160 data points was used develop predictive models. The XGBoost models exhibited high accuracy both onset temperature peak tan δ temperature, achieving R2 values 0.982 0.993 unseen test set, respectively. While GP lower with 0.834 0.842, they provided explicit equations enhance interpretability DL model facilitate practical application. To make these insights accessible engineers without expertise, web-based graphical user interface software developed, incorporating all Additionally, feature assessment conducted, providing visual representations impact each output results, thus enhancing engineering applications.

Язык: Английский

Процитировано

1

Experimental and numerical investigation of creep behaviour in adhesively bonded CFRP-steel joints DOI
Songbo Wang,

X. R. Ge,

Jun Su

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 464, С. 140234 - 140234

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

1

Creep behavior of epoxy adhesives subjected to different hygrothermal aging conditions—nanoindentation creep tests and theoretical study DOI
Feng Wei,

Jiamu He,

Zhen Dai

и другие.

Polymer Degradation and Stability, Год журнала: 2024, Номер 229, С. 110926 - 110926

Опубликована: Июль 27, 2024

Язык: Английский

Процитировано

4

Uncovering water conservation patterns in semi-arid regions through hydrological simulation and deep learning DOI Creative Commons
Rui Zhang,

Qichao Zhao,

Mingyue Liu

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(3), С. e0319540 - e0319540

Опубликована: Март 20, 2025

Under the increasing pressure of global climate change, water conservation (WC) in semi-arid regions is experiencing unprecedented levels stress. WC involves complex, nonlinear interactions among ecosystem components like vegetation, soil structure, and topography, complicating research. This study introduces a novel approach combining InVEST modeling, spatiotemporal transfer Water Conservation Reserves (WCR), deep learning to uncover regional patterns driving mechanisms. The model evaluates Xiong’an New Area’s characteristics from 2000 2020, showing 74% average increase depth with an inverted “V” spatial distribution. Spatiotemporal analysis identifies temporal changes, WCR land use, key protection areas, revealing that Area primarily shifts lowest areas lower areas. potential enhancement are concentrated northern region. Deep quantifies data complexity, highlighting critical factors precipitation, drought influencing WC. detailed enables development personalized zones strategies, offering new insights into managing complex data.

Язык: Английский

Процитировано

0

Variations in viscoelastic properties of structural adhesives and strengthening performance across service scenarios DOI
Songbo Wang,

Zhuo Duan,

Siyuan Yang

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 472, С. 140846 - 140846

Опубликована: Март 23, 2025

Язык: Английский

Процитировано

0

Low-code analysis of glass transition temperatures of structural strengthening adhesives DOI
Songbo Wang,

Zhuo Duan,

Siyuan Yang

и другие.

The Journal of Adhesion, Год журнала: 2025, Номер unknown, С. 1 - 28

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

0

Hybrid deep learning approach for rock tunnel deformation prediction based on spatio-temporal patterns DOI Creative Commons
Junfeng Sun, Yong Fang, H. Luo

и другие.

Underground Space, Год журнала: 2024, Номер 20, С. 100 - 118

Опубликована: Авг. 17, 2024

Язык: Английский

Процитировано

3

A stacking ensemble model for predicting the flexural fatigue life of fiber-reinforced concrete DOI

Wan-lin Min,

Weiliang Jin,

Yen-yi Hoo

и другие.

International Journal of Fatigue, Год журнала: 2024, Номер 190, С. 108599 - 108599

Опубликована: Сен. 12, 2024

Язык: Английский

Процитировано

1

Genetic evolutionary deep learning for fire resistance analysis in fibre-reinforced polymers strengthened reinforced concrete beams DOI
Songbo Wang, Yanchen Fu,

Sifan Ban

и другие.

Engineering Failure Analysis, Год журнала: 2024, Номер 169, С. 109149 - 109149

Опубликована: Дек. 11, 2024

Язык: Английский

Процитировано

1

Low-Code Automl Solutions for Predicting Bond Strength and Failure Modes of Cfrp-Steel Joints DOI
Songbo Wang, Zhen Liu, Jun Su

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0