Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Materials, Год журнала: 2024, Номер 17(14), С. 3493 - 3493
Опубликована: Июль 15, 2024
The growing demand for sustainable materials has significantly increased interest in biocomposites, which are made from renewable raw and have excellent mechanical properties. use of machine learning (ML) can improve our understanding their behavior while saving costs time. In this study, the innovative biocomposite sandwich structures under quasi-static out-of-plane compression was investigated using ML algorithms to analyze effects geometric variations on load-bearing capacities. A comprehensive dataset experimental tests focusing loading employed, evaluating three models—generalized regression neural networks (GRNN), extreme (ELM), support vector (SVR). Performance indicators such as R-squared (R2), mean absolute error (MAE), root square (RMSE) were used compare models. It shown that GRNN model with an RMSE 0.0301, MAE 0.0177, R2 0.9999 training dataset, 0.0874, 0.0489, 0.9993 testing set had a higher predictive accuracy. contrast, ELM showed moderate performance, SVR lowest accuracy RMSE, MAE, values 0.5769, 0.3782, 0.9700 training, 0.5980, 0.3976 0.9695 testing, suggesting it limited effectiveness predicting structures. nonlinear load-displacement behavior, including critical peaks fluctuations, effectively captured by both test datasets. progressive improvement performance illustrated, highlighting increasing complexity capability models capturing detailed relationships. superior generalization ability confirmed Taylor diagram Williams plot, majority samples falling within applicability domain, indicating strong new, unseen data. results demonstrate potential advanced accurately predict enabling more efficient cost-effective development optimization processes field materials.
Язык: Английский
Процитировано
8Sustainable Chemistry and Pharmacy, Год журнала: 2025, Номер 44, С. 101928 - 101928
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
0Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119878 - 119878
Опубликована: Окт. 24, 2024
Язык: Английский
Процитировано
2Journal of Constructional Steel Research, Год журнала: 2024, Номер 224, С. 109147 - 109147
Опубликована: Ноя. 10, 2024
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0