Predictive Modeling of the Long-term Effects of Combined Chemical Admixtures on Concrete Compressive Strength Using Machine Learning Algorithms DOI Creative Commons

S. Heidari,

Majid Safehian, Faramarz Moodi

и другие.

Case Studies in Chemical and Environmental Engineering, Год журнала: 2024, Номер 10, С. 101008 - 101008

Опубликована: Ноя. 13, 2024

Язык: Английский

Enhancing urban sustainability: a study on lightweight and pervious concrete incorporating recycled plastic DOI Creative Commons
S. Sathvik,

Pathapati Rohithkumar,

Pshtiwan Shakor

и другие.

Discover Sustainability, Год журнала: 2024, Номер 5(1)

Опубликована: Ноя. 20, 2024

Abstract Increasing of plastic waste threatening ecosystems globally, this experimental work investigates recycled plastics as sustainable aggregate replacements in pervious concrete. Pervious concrete allows water passage but has installation/maintenance difficulty due to high weight. This research addresses the lack eco-friendly lightweight solutions by assessing physical and mechanical performance mixes with 100% traditional percentages. Density reduced 12% using a mix, achieving 1358 kg/m 3 compressive strength 3.92 MPa, adequate for non-structural applications. A 7.8% decrease absorption versus conventional signifies retained porosity permeability despite aggregates. Though early material limitations increase costs over 199.32%, show viability effective, substitutes natural aggregates With further availability affordability improvements, these recyclable can enable significantly greener construction practices. Findings provide key insights on balancing structural requirements, eco-friendliness infiltration capacity plastic-based broader adoption. The examines durability characteristics Light-Weight Concrete (LWPC) composed entirely aggregate. It also economic potential urban cost assessment reveals long-term environmental advantages, even though initial expenses are higher. Additionally, study considers an approach that combines plant growth promote greater sustainability.

Язык: Английский

Процитировано

4

How Can We Assess Long-Term Multiple Properties Using Only Very Little High-Variance Experimental Data Fused Physical Information?-A Real-Life Concrete Dam Application DOI

Yunguo Cheng,

Mengxi Zhang, Dan Tian

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Novel approaches in prediction of tensile strain capacity of engineered cementitious composites using interpretable approaches DOI Creative Commons
Turki S. Alahmari, Furqan Farooq

REVIEWS ON ADVANCED MATERIALS SCIENCE, Год журнала: 2025, Номер 64(1)

Опубликована: Янв. 1, 2025

Abstract The performance and durability of conventional concrete (CC) are significantly influenced by its weak tensile strength strain capacity (TSC). Thus, the intrusion fibers in cementitious matrix forms ductile engineered composites (ECCs) that can cater to this area CC. Moreover, ECCs have become a reasonable substitute for brittle plain due their increased flexibility, ductility, greater TSC. prediction ECC is crucial without need laborious experimental procedures. achieve this, machine learning approaches (MLAs), namely light gradient boosting (LGB) approach, extreme (XGB) artificial neural network (ANN), k -nearest neighbor (KNN), were developed. data gathered from literature comprise input parameters which fiber content, length, cement, diameter, water-to-binder ratio, fly ash (FA), age, sand, superplasticizer, TSC as output utilized. assessment models gauged with coefficient determination ( R 2 ), statistical measures, uncertainty analysis. In addition, an analysis feature importance carried out further refinement model. result demonstrates ANN XGB perform well train test sets > 0.96. Statistical measures show all give fewer errors higher , depict robust performance. Validation via K -fold confirms showing correlation determination. reveals FA major contribution ECC. graphical user interface also developed help users/researchers will facilitate them estimate practical applications.

Язык: Английский

Процитировано

0

How machine learning can transform the future of concrete DOI
Kaoutar Mouzoun, Azzeddine Bouyahyaoui,

Hanane Moulay Abdelali

и другие.

Asian Journal of Civil Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 14, 2025

Язык: Английский

Процитировано

0

Multi-Objective Optimization of Blended Cement Mortars from Copper Slags DOI

Debadri Som,

Tobias Hertel, Glenn Beersaerts

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Development of low carbon concrete with high cement replacement ratio by multi-response optimization DOI Creative Commons
Suliman Khan, Safat Al‐Deen, C.K. Lee

и другие.

Cleaner Materials, Год журнала: 2025, Номер unknown, С. 100304 - 100304

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Study on the pore characteristics of polyurethane-based repair materials DOI

Dengpan Zhai,

Quansheng Sun, Zhengyi Liu

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 483, С. 141058 - 141058

Опубликована: Май 14, 2025

Язык: Английский

Процитировано

0

Artificial intelligence in the design, optimization, and performance prediction of concrete materials: a comprehensive review DOI Creative Commons
Dayou Luo,

Kejin Wang,

Dongming Wang

и другие.

npj Materials Sustainability, Год журнала: 2025, Номер 3(1)

Опубликована: Май 17, 2025

Язык: Английский

Процитировано

0

Prediction of the dynamic viscoelastic shear parameters of asphalt binder before and after freeze-thaw cycles using ACO-BPNN DOI
Z. Liu, Tengfei Nian,

Penghui Wang

и другие.

Construction and Building Materials, Год журнала: 2025, Номер 486, С. 142037 - 142037

Опубликована: Июнь 2, 2025

Язык: Английский

Процитировано

0

Experimental Investigation on Shear Strength at the Permeable Concrete–Fine-Grained Soil Interface for Slope Stabilization Using Deep Socket Counterfort Drains DOI Creative Commons
Maurizio Ziccarelli,

Giovanni Sapienza,

Antônio Casella

и другие.

GeoHazards, Год журнала: 2024, Номер 5(3), С. 917 - 931

Опубликована: Сен. 17, 2024

In slopes where high pore water pressure exists, deep counterfort drains (also called drainage trenches or trench drains) represent one of the most effective methods for improving stability mitigating landslide risks. cases very slip surfaces, this method represents only possible intervention. Trench can be realized by using panels secant piles filled with coarse granular material permeable concrete. If are adequately “socket” into stable ground (for example sufficiently below sliding surface a critical marginally slopes) and filling has sufficient shear strength stiffness, like porous concrete, there is further increase in due to “shear keys” effect. The both intrinsic resistance concrete on at concrete–soil interface (on lateral trench). latter significant relation thickness mass, “socket depth”, spacing between trenches. linked keys effect” depends state interface. For silty–clayey base soils, it same order magnitude as permanent reduction (draining effect). This paper presents results an experimental investigation fine-grained soils demonstrates significance effectiveness

Язык: Английский

Процитировано

1