Construction and Building Materials, Год журнала: 2024, Номер 456, С. 139193 - 139193
Опубликована: Ноя. 20, 2024
Язык: Английский
Construction and Building Materials, Год журнала: 2024, Номер 456, С. 139193 - 139193
Опубликована: Ноя. 20, 2024
Язык: Английский
Structural Concrete, Год журнала: 2025, Номер unknown
Опубликована: Янв. 7, 2025
Abstract Non‐structural components are difficult to recycle into fresh concrete due their high porosity, water absorption, and low strength. This study uses aerated waste (ACW) as a case investigate the effect of recycled aggregate on performance eco‐friendly foamed mortar (EFM). The results show that while incorporating ACW reduces fluidity mechanical properties its porous structure, it enhances lightweight thermal insulation capabilities EFM, making suitable for non‐structural applications. When 25% is applied, 28‐day compressive strength (CS) plain EFM decreases by 64.82%, hardened unit weight conductivity decrease 17.49% 30.85%, respectively. addition PPF compensates loss from ACW, with bridging inhibiting crack formation interlocking aggregates cement paste, though further fluidity. 0.5% 7‐ flexural increased 77.35% 30.54%, but this resulted in 22.22% reduction presents feasible approach recycling low‐grade construction production, contributing development sustainable materials.
Язык: Английский
Процитировано
3Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04463 - e04463
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Journal of Materials Science, Год журнала: 2025, Номер 60(6), С. 3178 - 3199
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
1Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 107042 - 107042
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Minerals, Год журнала: 2025, Номер 15(4), С. 405 - 405
Опубликована: Апрель 11, 2025
A novel artificial intelligence (AI) application was proposed in the current study to predict CTF’s compressive strength (CS). The database contained six input parameters: age of curing for specimens (AS), cement–sand ratio (C/S), maintenance temperature (T), additives (EA), additive type (AT), concentration (AC), and one output parameter: CS. Then, adaptive boosting (AdaBoost) applied existing AI soft computing techniques, using AdaBoost, random forest (RF), SVM, ANN. Data were arbitrarily separated into training (70%) test (30%) sets. Results confirm that AdaBoost RF have best prediction accuracy, with a correlation coefficient (R2) 0.957 between these sets AdaBoost. Using Python 3.9 (64-bit), IDLE (Python 64-bit), PyQt5 achieve machine learning model computation software function interface development, this can quickly property CTF specimens, which saves time costs efficiently backfill researchers developing new eco-efficient components.
Язык: Английский
Процитировано
0Structures, Год журнала: 2025, Номер 77, С. 108996 - 108996
Опубликована: Май 2, 2025
Язык: Английский
Процитировано
0Journal of Building Engineering, Год журнала: 2024, Номер 96, С. 110630 - 110630
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
2Indian geotechnical journal, Год журнала: 2024, Номер unknown
Опубликована: Окт. 5, 2024
Язык: Английский
Процитировано
1Construction and Building Materials, Год журнала: 2024, Номер 456, С. 139193 - 139193
Опубликована: Ноя. 20, 2024
Язык: Английский
Процитировано
1