
AIMS environmental science, Год журнала: 2025, Номер 12(3), С. 495 - 525
Опубликована: Янв. 1, 2025
Язык: Английский
AIMS environmental science, Год журнала: 2025, Номер 12(3), С. 495 - 525
Опубликована: Янв. 1, 2025
Язык: Английский
Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04305 - e04305
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
10Heliyon, Год журнала: 2025, Номер 11(2), С. e41924 - e41924
Опубликована: Янв. 1, 2025
The rapid global expansion of e-waste poses significant environmental and health risks, making it crucial to find sustainable uses mitigate its harmful effects. significance this research is look into the impact as a possible substitute for natural coarse aggregates (NCA) on fresh, hardened durability characteristics concrete, alongside machine learning (ML) predictive analysis. Four kinds concrete mixes were made with produced material NCA, substitution levels calculated 0 %, 10 15 % 20 (by mass NCA). Compressive splitting tensile tests evaluated mechanical properties whereas water permeability electrical resistivity assessed determine optimal proportion construction. compressive strengths reduced by 13.41%-25.50 11%-19.26 respectively, replacement ranging from at 28 days. specimens, 300 °C, exhibited reductions in strength 15.26%-30.87 10.52%-19.74 10%-20 respectively. With high coefficient correlation (R2) values, linear regression (LR) model predicted property outcomes more accurately than random forest (RF) model. test showed better results increased range 239.06 %-478.82 %. findings improved when quantity plastic was In terms all percentage results, best construction material.
Язык: Английский
Процитировано
4Journal of Materials Research and Technology, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
4Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112081 - 112081
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
3Case Studies in Construction Materials, Год журнала: 2025, Номер unknown, С. e04568 - e04568
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
3Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112557 - 112557
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
2Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 17, 2025
Abstract The increasing prevalence of malware presents a critical challenge to cybersecurity, emphasizing the need for robust detection methods. This study uses binary tabular classification dataset evaluate impact feature selection, scaling, and machine learning (ML) models on detection. methodology involves experimenting with three scaling techniques (no normalization, min-max scaling), selection methods Linear Discriminant Analysis (LDA), Principal Component (PCA)), twelve ML models, including traditional algorithms ensemble A publicly available 11,598 samples 139 features is utilized, model performance assessed using metrics such as accuracy, precision, recall, F1-score, AUC-ROC. Results reveal that Light Gradient Boosting Machine (LGBM) achieves highest accuracy 97.16% when PCA either or normalization are applied. Additionally, consistently outperform demonstrating their effectiveness in enhancing These findings offer valuable insights into optimizing preprocessing strategies developing reliable efficient systems.
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112266 - 112266
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112460 - 112460
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0