Flexible Job Shop Scheduling Problem using graph neural networks and reinforcement learning DOI

Xi Liu,

Xin Chen, Vincent Chau

и другие.

Computers & Operations Research, Год журнала: 2025, Номер unknown, С. 107139 - 107139

Опубликована: Май 1, 2025

Язык: Английский

A multi-dimensional co-evolutionary algorithm for multi-objective resource-constrained flexible flowshop with robotic transportation DOI
Jiake Li,

Rong-hao Li,

Junqing Li

и другие.

Applied Soft Computing, Год журнала: 2025, Номер 170, С. 112689 - 112689

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

3

A Q-learning-based improved multi-objective genetic algorithm for solving distributed heterogeneous assembly flexible job shop scheduling problems with transfers DOI
Zhijie Yang,

Xiaosen Hu,

Yibing Li

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 79, С. 398 - 418

Опубликована: Фев. 8, 2025

Язык: Английский

Процитировано

2

An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories DOI Creative Commons
Seungjae Lee, Byung Soo Kim

Mathematics, Год журнала: 2025, Номер 13(5), С. 877 - 877

Опубликована: Март 6, 2025

This paper addresses a distributed permutation flowshop scheduling problem with an order acceptance strategy in heterogeneous factories. Each has related revenue and due date, several machines are operated each factory, they have distinct sequence-dependent setup time. We select/reject production orders, assign the selected orders to factories, determine manufacturing sequence factory maximize total profit. To optimally solve problem, we formulate as mixed integer linear programming model find optimal solution for small-sized experiments. Then, propose two population-based algorithms, genetic algorithm particle swarm optimization large-sized proved that proposed effectively efficiently solves guarantee near through computational Finally, conduct sensitivity analysis of observe relationship between selection, revenue, tardiness cost.

Язык: Английский

Процитировано

0

Solving the Permutation Flow Shop Scheduling Problem with Sequence-dependent Setup Time via Iterative Greedy Algorithm and Imitation Learning DOI

Zhaosheng Du,

Jun-qing Li,

Haonan Song

и другие.

Mathematics and Computers in Simulation, Год журнала: 2025, Номер 234, С. 169 - 193

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

0

Q-learning based estimation of distribution algorithm for scheduling distributed heterogeneous flexible flow-shop with mixed buffering limitation DOI
Hua Xuan, Qianqian Zheng,

Lin Lv

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 149, С. 110537 - 110537

Опубликована: Март 12, 2025

Язык: Английский

Процитировано

0

Constructive-destructive neighbor search drives artificial bee colony algorithm for variable speed green hybrid flowshop scheduling problem DOI Creative Commons
Danying Hu, Yali Wu, Lei Qiu

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Март 20, 2025

The hybrid flowshop scheduling problem (HFSP), a typical NP-hard problem, has gained significant interest from researchers focusing on the development of solution methods. We focus variable speed problem. assume that machines operate at when processing workpieces, making more reflective real-world scenarios. Aiming this optimization strategy for encoding and decoding is proposed. Meanwhile, we design constructive-destructive search driven artificial bee colony algorithm to solve variable-speed green flow shop minimize makespan total energy consumption. A neighbor method designed update population in employed phase. process redesigned with three operators named technique order preferences similarity ideal solutions, binary tournament selection, global strategies onlooker In scout phase, individual evaluation replacement are designed. Extensive experimental evaluations testify CDSABC outperforms other algorithms regarding best, worst, average, standard deviation IGD index 80% test cases.

Язык: Английский

Процитировано

0

Solving multi-objective energy-efficient flexible job shop problems by a dual-level NSGA-II algorithm DOI
Junqing Li,

Weimeng Zhang,

Jiake Li

и другие.

Memetic Computing, Год журнала: 2025, Номер 17(2)

Опубликована: Март 21, 2025

Язык: Английский

Процитировано

0

A trajectory-based algorithm enhanced by Q-learning and cloud integration for hybrid flexible flowshop scheduling problem with sequence-dependent setup times: A case study DOI
Fehmi Burçin Özsoydan

Computers & Operations Research, Год журнала: 2025, Номер unknown, С. 107079 - 107079

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Adaptive reference-points learning and cooperation driven multi-objective algorithm for hybrid group flow shop with outsourcing option DOI
Xinrui Wang, Junqing Li,

Jiake Li

и другие.

CIRP journal of manufacturing science and technology, Год журнала: 2025, Номер 60, С. 56 - 75

Опубликована: Апрель 24, 2025

Язык: Английский

Процитировано

0

Scheduling multi-configuration last-mile delivery logistics by learning from optimisation feedback and customer preferences DOI
Keivan Tafakkori, Reza Tavakkoli‐Moghaddam, Ali Siadat

и другие.

International Journal of Production Research, Год журнала: 2025, Номер unknown, С. 1 - 30

Опубликована: Май 23, 2025

Язык: Английский

Процитировано

0