Vision Systems for a UR5 Cobot on a Quality Control Robotic Station DOI Creative Commons
Piotr Kohut,

Kamil Skop

Applied Sciences, Год журнала: 2024, Номер 14(20), С. 9469 - 9469

Опубликована: Окт. 17, 2024

This paper addresses the development of a vision system for UR5 cobot and corresponding operating algorithm robotic quality control station. The hardware–software architecture developed station consisting equipped with web camera stationary industrial lighting is presented. Image processing analysis algorithms are described, method communication between components discussed, scenarios presented as single part line. Based on results which were obtained, level measurement noise, accuracy, repeatability estimated. A novel complete modules shown discussed. software based Python 3.12 language, OpenCV 4.7.0.68 libraries, PolyScope 1.8 environment incorporates calibration, image acquisition, preprocessing (for objects’ location geometric measurements) cell control. hardware PC two independent distinct cameras: one permanently affixed other mounted to cobot’s flange. innovative setup, combined architecture, broadens scope existing applications.

Язык: Английский

Internet of Robotic Things: Current Technologies, Challenges, Applications, and Future Research Topics DOI Creative Commons
Jakub Krejčí, Marek Babiuch, Jiří Suder

и другие.

Sensors, Год журнала: 2025, Номер 25(3), С. 765 - 765

Опубликована: Янв. 27, 2025

This article focuses on the integration of Internet Things (IoT) and Robotic Things, representing a dynamic research area with significant potential for industrial applications. The (IoRT) integrates IoT technologies into robotic systems, enhancing their efficiency autonomy. provides an overview used in IoRT, including hardware components, communication technologies, cloud services. It also explores IoRT applications industries such as healthcare, agriculture, more. discusses challenges future directions, data security, energy efficiency, ethical issues. goal is to raise awareness importance demonstrate how this technology can bring benefits across various sectors.

Язык: Английский

Процитировано

2

Environmental sensing in autonomous construction robots: Applicable technologies and systems DOI
Chinedu Okonkwo, Ibukun Awolusi

Automation in Construction, Год журнала: 2025, Номер 172, С. 106075 - 106075

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

1

A deep dive into cybersecurity solutions for AI-driven IoT-enabled smart cities in advanced communication networks DOI
Jehad Ali, Sushil Kumar Singh, Weiwei Jiang

и другие.

Computer Communications, Год журнала: 2024, Номер 229, С. 108000 - 108000

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

7

Web-based human-robot collaboration digital twin management and control system DOI
Xin Liu, Gongfa Li, Feng Xiang

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102907 - 102907

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

4

Scalable and energy-efficient task allocation in industry 4.0: Leveraging distributed auction and IBPSO DOI Creative Commons

Qingwen Li,

Tang Wai Fan,

Siew-Kei Lam

и другие.

PLoS ONE, Год журнала: 2025, Номер 20(1), С. e0314347 - e0314347

Опубликована: Янв. 16, 2025

Industry 4.0 has transformed manufacturing with the integration of cutting-edge technology, posing crucial issues in efficient task assignment to multi-tasking robots within smart factories. The paper outlines a unique method decentralizing auctions handle basic tasks. It also introduces an improved variant Binary Particle Swarm Optimization (IBPSO) algorithm manage complicated tasks that require multi-robot collaboration. main contributions we make are: design auction decentralization (AOCTA) which allows for and flexible distribution dynamic contexts, optimization coalition formation complex jobs by using IBPSO improves efficiency energy decreases cost computation as well thorough simulations show our proposed significantly surpasses conventional methods efficiency, completion rates terms usage, rate, scaling system. This research contributes development through providing effective solution aligns sustainability objectives addresses operational environmental impacts. Addressing challenges posed allocation distributed systems, these advanced technologies provide comprehensive solution, facilitating evolution innovative systems.

Язык: Английский

Процитировано

0

Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell DOI Creative Commons
Tomasz Bƚachowicz,

Jacek Wylezek,

Zbigniew Sokol

и другие.

Information, Год журнала: 2025, Номер 16(2), С. 79 - 79

Опубликована: Янв. 22, 2025

The application of modern machine learning methods in industrial settings is a relatively new challenge and remains the early stages development. Current computational power enables processing vast numbers production parameters real time. This article presents practical analysis welding process robotic cell using unsupervised HDBSCAN algorithm, highlighting its advantages over classical k-means algorithm. paper also addresses problem predicting monitoring undesirable situations proposes use real-time graphical representation noisy data as particularly effective solution for managing such issues.

Язык: Английский

Процитировано

0

Localized environmental variability within the Hindukush-Himalayan region of Pakistan DOI Creative Commons
Fazlul Haq,

Munazza Afreen,

Bryan G. Mark

и другие.

Environmental Earth Sciences, Год журнала: 2025, Номер 84(4)

Опубликована: Фев. 1, 2025

Abstract The Hindukush-Himalayan (HKH) region, known for its eco-environmental importance, has been witnessing transformations in recent years governed by factors such as climate variability, land use shifts, and population growth. These changes have profound implications regional sustainability, water resources, livelihood. This study attempts to explore the spatial temporal variability selected environmental parameters including surface temperature (LST), normalized difference vegetation index (NDVI), precipitation patterns, snow (NDSI), cover (LULC) from 1990 2022 using Landsat imageries (30 m resolution), CHIRPS data at 0.05° resolution. area spans 32,000 km 2 covering two major political/administrative divisions (Malakand Hazara) HKH region of Pakistan. was primarily because unprecedented over last three decades. For detailed analysis, divided into five elevation zones LST, NDVI, NDSI, LULC analyses were conducted utilizing Google Earth Engine (GEE) platform engine. results revealed a notable rise LST lowest zone. NDVI noticeable decline 5988 1990, 4225 2010, followed growth 7669 2022, since 2010 after launching Billion Tree Tsunami Afforestation Project (BTTAP) 2013. Likewise, patterns exhibit transitioning low high levels. However, most finding is marked covered 7000 3800 between 2022.

Язык: Английский

Процитировано

0

A survey on Ultra Wide Band based localization for mobile autonomous machines DOI Creative Commons
Ning Xu, Mingyang Guan, Changyun Wen

и другие.

Journal of Automation and Intelligence, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

AI-based approaches for improving autonomous mobile robot localization in indoor environments: A comprehensive review DOI Creative Commons
Shoude Wang, Nur Syazreen Ahmad

Engineering Science and Technology an International Journal, Год журнала: 2025, Номер 63, С. 101977 - 101977

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0

Multi-Agent Reinforcement Learning for task allocation in the Internet of Vehicles: Exploring benefits and paving the future DOI
Inam Ullah, Sushil Kumar Singh, Deepak Adhikari

и другие.

Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101878 - 101878

Опубликована: Фев. 20, 2025

Язык: Английский

Процитировано

0