Current Opinion in Solid State and Materials Science, Год журнала: 2024, Номер 34, С. 101202 - 101202
Опубликована: Окт. 9, 2024
Язык: Английский
Current Opinion in Solid State and Materials Science, Год журнала: 2024, Номер 34, С. 101202 - 101202
Опубликована: Окт. 9, 2024
Язык: Английский
Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 216, С. 111492 - 111492
Опубликована: Май 3, 2024
Язык: Английский
Процитировано
18Composites Part A Applied Science and Manufacturing, Год журнала: 2024, Номер 185, С. 108298 - 108298
Опубликована: Июнь 7, 2024
Язык: Английский
Процитировано
12Materials & Design, Год журнала: 2024, Номер 243, С. 113079 - 113079
Опубликована: Июнь 12, 2024
Laser Shock Peening (LSP) is an advanced technique for enhancing surface properties, drawing significant interest its ability to induce beneficial residual stresses in materials. Traditional LSP design processes, reliant on manual parameter selection, often result imprecise control over the stress distribution, necessitating multiple iterations and high costs. This study introduces a machine learning (ML)-based approach, utilizing Random Forest (RF) algorithm, automate optimize of parameters nickel-aluminium bronze surfaces. Our findings demonstrate RF model's capability accurately predict distributions, achieving compressive up 472 MPa with notable reduction iterations. The model forecasts both uniform non-uniform patterns, particularly identifying areas susceptible Residual Stress Holes (RSH) improved precision. With Absolute Percentage Error (APE) only 6.2 %, our approach significantly outperforms traditional ML algorithms, offering novel method efficiently designing complex fields applications.
Язык: Английский
Процитировано
4Thin-Walled Structures, Год журнала: 2024, Номер unknown, С. 112860 - 112860
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
3International Journal of Mechanical Sciences, Год журнала: 2025, Номер unknown, С. 110190 - 110190
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104905 - 104905
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Aerospace, Год журнала: 2025, Номер 12(5), С. 390 - 390
Опубликована: Апрель 30, 2025
Lattice structures, with their unique design, offer properties like a programmable elastic modulus, an adjustable Poisson’s ratio, high specific strength, and large surface area, making them the key to achieving structural lightweighting, improving impact resistance, vibration suppression, maintaining thermal efficiency in aerospace field. However, functional prediction inverse design remain challenging due cross-scale effects, extensive spatial freedom, computational costs. Recent advancements AI have driven progress predicting lattice structure functionality. This paper begins introduction types, properties, applications. Then development process for performance-prediction methods of structures is summarized. The current applications methods, which are data-driven related material performance under conditions coupled multi-physical fields, analyzed, this analysis further extends relation summarizes application mechanical, energy absorption, acoustic, structures; elaborates on these optimization field; details relevant theory references field analysis. Finally, problems research demonstrated, future direction envisioned.
Язык: Английский
Процитировано
0International Journal of Mechanical Sciences, Год журнала: 2025, Номер 297-298, С. 110358 - 110358
Опубликована: Май 8, 2025
Язык: Английский
Процитировано
0Thin-Walled Structures, Год журнала: 2024, Номер 204, С. 112328 - 112328
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
2APL Materials, Год журнала: 2024, Номер 12(12)
Опубликована: Дек. 1, 2024
The 2024 Nobel Prizes in Physics and Chemistry were awarded for foundational discoveries inventions enabling machine learning through artificial neural networks. Artificial intelligence (AI) metamaterials are two cutting-edge technologies that have shown significant advancements applications various fields. AI, with its roots tracing back to Alan Turing’s seminal work, has undergone remarkable evolution over decades, key including the Turing Test, expert systems, deep learning, emergence of multimodal AI models. Electromagnetic wave control, critical scientific research industrial applications, been significantly broadened by metamaterials. This review explores synergistic integration metamaterials, emphasizing how accelerates design functionality materials, while novel physical networks constructed from enhance AI’s computational speed ability solve complex problems. paper provides a detailed discussion AI-based forward prediction inverse principles metamaterial design. It also examines potential big-data-driven methods addressing challenges In addition, this delves into role advancing focusing on progress electromagnetic optics, terahertz, microwaves. Emphasizing transformative impact intersection between underscores improvements efficiency, accuracy, applicability. collaborative development process opens new possibilities innovations photonics, communications, radars, sensing.
Язык: Английский
Процитировано
2